
A Provably Correct Scalable Concurrent Skip

List

Maurice Herlihy1,2, Yossi Lev1,2, Victor Luchangco2, and Nir Shavit2

1 Computer Science Department, Brown University, Providence, RI 02912
2 Sun Microsystems Laboratories, 1 Network Drive, Burlington, MA 01803

Abstract. We propose a new concurrent skip list algorithm distinguished
by a combination of simplicity and scalability. The algorithm employs
optimistic synchronization, searching without acquiring locks, followed
by short lock-based validation before adding or removing nodes. It also
logically removes an item before physically unlinking it. Unlike some
other concurrent skip list algorithms, this algorithm preserves the skip
list properties at all times, which facilitates reasoning about its correct-
ness. Experimental evidence shows that this algorithm performs as well
as the best previously known algorithm under most circumstances.

1 Introduction

Skip lists [7] are an increasingly important data structure for storing and re-
trieving ordered in-memory data. In this paper, we propose a new concurrent
skip-list algorithm that appears to perform as well as the best existing concur-
rent skip list implementation under most conditions. The principal advantage of
our implementation is that it is much simpler, and much easier to reason about.

The ConcurrentSkipListMap, written by Doug Lea based on work by Fraser
and Harris [2] and released as part of the JavaTM SE 6 platform, is the best con-
current skip-list implementation that we are aware of. This algorithm is lock-free,
and performs well in practice. The principal limitation of this implementation is
that it is complicated. Certain interleavings can cause the usual skip list struc-
ture to be violated, sometimes transiently, and sometimes permanently. These
violations do not affect performance or correctness, but they make it difficult to
reason about the correctness of the algorithm. By contrast, the algorithm pre-
sented here preserves the skip list structure at all times. The algorithm is simple
enough that we are able to provide a straightforward proof of correctness.

Our algorithm employs two complementary techniques. First, it is optimistic:
methods traverse the list without acquiring locks. When a method discovers the
items it is seeking, it locks the item and its predecessors, and then validates that
the list is unchanged. Second, removing an item involves logically deleting it by
marking it before it is physically removed (unlinked) from the list.

Experimental tests show that despite its simplicity, this algorithm performs
as well as the lock-free Lea algorithm, except under conditions of extreme con-
tention in multiprogrammed environments. In Section 6 we discuss some ap-
proaches for future work to address this issue.

- - - -

-

-

- - --

- -

−∞ 5 7 8 13 15 22 25 +∞

Fig. 1. A skip list with maximum height of 4. The number below each node (i.e., array
of next pointers) is the key of that node, with −∞ and +∞ as the keys for the left
and right sentinel nodes respectively.

2 Background

A skip list [7] is a linked list that is sorted by key, and in which nodes are
assigned a random height, up to some maximum height, where the frequency of
nodes of a particular height decreases exponentially with the height. A node in
a skip list has not just one successor, but a number of successors equal to its
height: each node stores a pointer to the next node in the list of each height up
to its own. For example, a node of height 3 stores three “next pointers”, one to
the next node of height 1, one to the next node of height 2, and one to the next
node of height 3. Figure 1 illustrates a skip list in which the keys are integers.

We think of a skip list as having several layers of lists, and we talk about the
predecessor and successor of a node at each layer. The list at each layer, other
than the bottom layer, is a sublist of the list at the layer beneath it. Because there
are exponentially fewer nodes of greater heights, we can find a key quickly by
searching first at higher layers, skipping over large numbers of shorter nodes and
progressively working downward until a node with the desired key is found, or
else the bottom layer is reached. Thus, the expected time complexity of skip-list
operations is logarithmic in the length of the list.

It is convenient to have left sentinel and right sentinel nodes, at the beginning
and end of the lists respectively. These nodes have the maximum height, and
initially, when the skip list is empty, the right sentinel is the successor of the left
sentinel at every layer. The left sentinel’s key is smaller, and the right sentinel’s
key is greater, than any key that may be added to the set. Searching the skip
list thus always begins at the left sentinel.

3 Our Algorithm

We present our concurrent skip-list algorithm in the context of an implementa-
tion of a set object supporting three methods, add, remove and contains: add(v)
adds v to the set and returns true iff v was not already in the set; remove(v)
removes v from the set and returns true iff v was in the set; and contains(v)
returns true iff v is in the set. We show that our implementation is linearizable

[5]; that is, every operation appears to take place atomically at some point (the

2

4 class Node {
5 int key ;
6 int topLayer ;
7 Node∗∗ nexts ;
8 bool marked ;
9 bool fullyLinked ;

10 Lock lock ;
11 } ;

Figure 1.2. A node

linearization point) between its invocation and response. We also show that the
implementation is deadlock-free, and that the contains operation is wait-free;
that is, a thread is guaranteed to complete a contains operation as long as it
keeps taking steps, regardless of the activity of other threads.

Our algorithm builds on the lazy-list algorithm of Heller et al. [3], a simple
concurrent linked-list algorithm with an optimistic fine-grained locking scheme
for the add and remove operations, and a wait-free contains operation: we use
lazy lists at each layer of the skip list. As in the lazy list, the key of each node
is strictly greater than the key of its predecessor, and each node has a marked

flag, which is used to make remove operations appear atomic. However, unlike
the simple lazy list, we may have to link the node in at several layers, and thus
might not be able to insert a node with a single atomic instruction, which could
serve as the linearization point of a successful add operation. Thus, for the lazy
skip list, we augment each node with an additional flag, fullyLinked, which is
set to true after a node has been linked in at all its layers; setting this flag is the
linearization point of a successful add operation in our skip-list implementation.
Figure 1.2 shows the fields of a node.

A key is in the abstract set if and only if there is an unmarked, fully linked
node with that key in the list (i.e., reachable from the left sentinel).

To maintain the skip-list structure—that is, that each list is a sublist of
the list at lower layers—changes are made to the list structure (i.e., the nexts

pointers) only when locks are acquired for all nodes that need to be modified.
(There is one exception to this rule involving the add operation, discussed below.)

In the following detailed description of the algorithm, we assume the existence
of a garbage collector to reclaim nodes that are removed from the skip list, so
nodes that are removed from the list are not recycled while any thread might
still access them. In the proof (Section 4), we reason as though nodes are never
recycled. In a programming environment without garbage collection, we can use
solutions to the repeat offenders problem [4] or hazard pointers [6] to achieve the
same effect. We also assume that keys are integers from MinInt+1 to MaxInt-1.
We use MinInt and MaxInt as the keys for LSentinel and RSentinel, which
are the left and right sentinel nodes respectively.

Searching in the skip list is accomplished by the findNode helper function
(see Figure 1.3), which takes a key v and two maximal-height arrays preds and

3

33 int findNode (int v ,
34 Node∗ preds [] ,
35 Node∗ succs []) {
36 int lFound = −1;
37 Node∗ pred = &LSentinel ;
38 for (int layer = MaxHeight −1;
39 layer ≥ 0 ;
40 layer−−) {
41 Node∗ curr = pred−>nexts [layer] ;
42 while (v > curr−>key) {
43 pred = curr ; curr = pred−>nexts [layer] ;
44 }
45 i f (lFound == −1 && v == curr−>key) {
46 lFound = layer ;
47 }
48 preds [layer] = pred ;
49 succs [layer] = curr ;
50 }
51 return lFound ;
52 }

Figure 1.3. The findNode helper function

succs of node pointers, and searches exactly as in a sequential skip list, starting
at the highest layer and proceeding to the next lower layer each time it encounters
a node whose key is greater than or equal to v. The thread records in the preds

array the last node with a key less than v that it encountered at each layer, and
that node’s successor (which must have a key greater than or equal to v) in the
succs array. If it finds a node with the sought-after key, findNode returns the
index of the first layer at which such a node was found; otherwise, it returns
−1. For simplicity of presentation, we have findNode continue to the bottom
layer even if it finds a node with the sought-after key at a higher level, so all the
entries in both preds and succs arrays are filled in after findNode terminates
(see Section 3.4 for optimizations used in the real implementation). Note that
findNode does not acquire any locks, nor does it retry in case of conflicting
access with some other thread. We now consider each of the operations in turn.

3.1 The add operation

The add operation, shown in Figure 1.4, calls findNode to determine whether
a node with the key is already in the list. If so (lines 59–66), and the node is
not marked, then the add operation returns false, indicating that the key is
already in the set. However, if that node is not yet fully linked, then the thread
waits until it is (because the key is not in the abstract set until the node is
fully linked). If the node is marked, then some other thread is in the process of
deleting that node, so the thread doing the add operation simply retries.

4

54 bool add (int v) {
55 int topLayer = randomLevel (MaxHeight) ;
56 Node∗ preds [MaxHeight] , succs [MaxHeight] ;
57 while (true) {
58 int lFound = findNode (v , preds , succs) ;
59 i f (lFound 6= −1) {
60 Node∗ nodeFound = succs [lFound] ;
61 i f (! nodeFound−>marked) {
62 while (! nodeFound−>fullyLinked) { ;}
63 return fa lse ;
64 }
65 continue ;
66 }
67 int highestLocked = −1;
68 try {
69 Node ∗pred , ∗succ , ∗prevPred = null ;
70 bool valid = true ;
71 for (int layer = 0 ;
72 valid && (layer ≤ topLayer) ;
73 layer++) {
74 pred = preds [layer] ;
75 succ = succs [layer] ;
76 i f (pred 6= prevPred) {
77 pred−>lock . lock () ;
78 highestLocked = layer ;
79 prevPred = pred ;
80 }
81 valid = ! pred−>marked && ! succ−>marked &&
82 pred−>nexts [layer]==succ ;
83 }
84 i f (! valid) continue ;

86 Node∗ newNode = new Node (v , topLayer) ;
87 for (int layer = 0 ;
88 layer ≤ topLayer ;
89 layer++) {
90 newNode−>nexts [layer] = succs [layer] ;
91 preds [layer]−>nexts [layer] = newNode ;
92 }

94 newNode−>fullyLinked = true ;
95 return true ;
96 }
97 f ina l ly { unlock (preds , highestLocked) ; }
98 }

Figure 1.4. The add method

5

If no node was found with the appropriate key, then the thread locks and
validates all the predecessors returned by findNode up to the height of the
new node (lines 69–84). This height, denoted by topNodeLayer, is determined
at the very beginning of the add operation using the randomLevel function.3

Validation (lines 81–83) checks that for each layer i ≤ topNodeLayer, preds[i]
and succs[i] are still adjacent at layer i, and that neither is marked. If validation
fails, the thread encountered a conflicting operation, so it releases the locks it
acquired (in the finally block at line 97) and retries.

If the thread successfully locks and validates the results of findNode up to the
height of the new node, then the add operation is guaranteed to succeed because
the thread holds all the locks until it fully links its new node. In this case, the
thread allocates a new node with the appropriate key and height, links it in, sets
the fullyLinked flag of the new node (this is the linearization point of the add

operation), and then returns true after releasing all its locks (lines 86–97). The
thread writing newNode->nexts[i] is the one case in which a thread modifies
the nexts field for a node it has not locked. It is safe because newNode will not
be linked into the list at layer i until the thread sets preds[i]->nexts[i] to
newNode, after it writes newNode->nexts[i].

3.2 The remove operation

The remove operation shown in Figure 1.5, likewise calls findNode to determine
whether a node with the appropriate key is in the list. If so, the thread checks
whether the node is “okay to delete” (Figure 1.6), which means it is fully linked,
not marked, and it was found at its top layer.4 If the node meets these require-
ments, the thread locks the node and verifies that it is still not marked. If so,
the thread marks the node, which logically deletes it (lines 111–121); that is, the
marking of the node is the linearization point of the remove operation.

The rest of the procedure accomplishes the “physical” deletion, removing the
node from the list by first locking its predecessors at all layers up to the height
of the deleted node (lines 124–138), and splicing the node out one layer at a time
(lines 140–142). To maintain the skip-list structure, the node is spliced out of
higher layers before being spliced out of lower ones (though, to ensure freedom
from deadlock, as discussed in Section 4, the locks are acquired in the opposite
order, from lower layers up). As in the add operation, before changing any of the
deleted node’s predecessors, the thread validates that those nodes are indeed still
the deleted node’s predecessors. This is done using the weakValidate function,
which is the same as validate except that it does not fail if the successor

3 This function is taken from Lea’s algorithm to ensure a fair comparison in the ex-
periments presented in Section 5. It returns 0 with probability 3

4
, i with probability

2−(i+2) for i ∈ [1, 30], and 31 with probability 2−32.
4 A node found not in its top layer was either not yet fully linked, or marked and

partially unlinked, at some point when the thread traversed the list at that layer.
We could have continued with the remove operation, but the subsequent validation
would fail.

6

101 bool remove (int v) {
102 Node∗ nodeToDelete = null ;
103 bool isMarked = fa l se ;
104 int topLayer = −1;
105 Node∗ preds [MaxHeight] , succs [MaxHeight] ;
106 while (true) {
107 int lFound = findNode (v , preds , succs) ;
108 i f (isMarked | |
109 (lFound 6= −1 && okToDelete (succs [lFound] , lFound))) {

111 i f (! isMarked) {
112 nodeToDelete = succs [lFound] ;
113 topLayer = nodeToDelete−>topLayer ;
114 nodeToDelete−>lock . lock () ;
115 i f (nodeToDelete−>marked) {
116 nodeToDelete−>lock . unlock () ;
117 return fa lse ;
118 }
119 nodeToDelete−>marked = true ;
120 isMarked = true ;
121 }
122 int highestLocked = −1;
123 try {
124 Node ∗pred , ∗succ , ∗prevPred = null ;
125 bool valid = true ;
126 for (int layer = 0 ;
127 valid && (layer ≤ topLayer) ;
128 layer++) {
129 pred = preds [layer] ;
130 succ = succs [layer] ;
131 i f (pred 6= prevPred) {
132 pred−>lock . lock () ;
133 highestLocked = layer ;
134 prevPred = pred ;
135 }
136 valid = ! pred−>marked && pred−>nexts [layer]==succ ;
137 }
138 i f (! valid) continue ;

140 for (int layer = topLayer ; layer ≥ 0 ; layer−−) {
141 preds [layer]−>nexts [layer] = nodeToDelete−>nexts [layer] ;
142 }
143 nodeToDelete−>lock . unlock () ;
144 return true ;
145 }
146 f ina l ly { unlock (preds , highestLocked) ; }
147 }
148 else return fa lse ;
149 }
150 }

Figure 1.5. The remove method
7

152 bool okToDelete (Node∗ candidate , int lFound) {
153 return (candidate−>fullyLinked

154 && candidate−>topLayer==lFound

155 && ! candidate−>marked) ;
156 }

Figure 1.6. The okToDelete method

158 bool contains (int v) {
159 Node∗ preds [MaxHeight] , succs [MaxHeight] ;
160 int lFound = findNode (v , preds , succs) ;
161 return (lFound 6= −1
162 && succs [lFound]−>fullyLinked

163 && ! succs [lFound]−>marked) ;
164 }

Figure 1.7. The contains method

is marked, since the successor in this case should be the node to be removed
that was just marked. If the validation fails, then the thread releases the locks
on the old predecessors (but not the deleted node) and tries to find the new
predecessors of the deleted node by calling findNode again. However, at this
point it has already set the local isMarked flag so that it will not try to mark
another node. After successfully removing the deleted node from the list, the
thread releases all its locks and returns true.

If no node was found, or the node found was not “okay to delete” (i.e., was
marked, not fully linked, or not found at its top layer), then the operation simply
returns false (line 148). It is easy to see that this is correct if the node is not
marked because for any key, there is at most one node with that key in the
skip list (i.e., reachable from the left sentinel) at any time, and once a node is
put in the list (which it must have been to be found by findNode), it is not
removed until it is marked. However, the argument is trickier if the node is
marked, because at the time the node is found, it might not be in the list, and
some unmarked node with the same key may be in the list. However, as we argue
in Section 4, in that case, there must have been some time during the execution
of the remove operation at which the key was not in the abstract set.

3.3 The contains operation

Finally, we consider the contains operation, shown in Figure 1.7, which just
calls findNode and returns true if and only if it finds a unmarked, fully linked
node with the appropriate key. If it finds such a node, then it is immediate from
the definition that the key is in the abstract set. However, as mentioned above,
if the node is marked, it is not so easy to see that it is safe to return false. We
argue this in Section 4.

8

3.4 Implementation Issues

We implemented the algorithm in the JavaTM programming language, in or-
der to compare it with Doug Lea’s nonblocking skip-list implementation in the
java.util.concurrent package. The array stack variables in the pseudocode
are replaced by thread-local variables, and we used a straightforward lock imple-
mentation (we could not use the built-in object locks because our acquire and
release pattern could not always be expressed using synchronized blocks).

The pseudocode presented was optimized for simplicity, not efficiency, and
there are numerous obvious ways in which it can be improved, many of which
we applied to our implementation. For example, if a node with an appropriate
key is found, the add and contains operations need not look further; they only
need to ascertain whether that node is fully linked and unmarked. If so, the
contains operation can return true and the add operation can return false.
If not, then the contains operation can return false, and the add operation
either waits before returning false (if the node is not fully linked) or else must
retry. The remove operation does need to search to the bottom layer to find all
the predecessors of the node to be deleted, however, once it finds and marks the
node at some layer, it can search for that exact node at lower layers rather than
comparing keys.5 This is correct because once a thread marks a node, no other
thread can unlink it.

Also, in the pseudocode, findNode always starts searching from the highest
possible layer, though we expect most of the time that the highest layers will
be empty (i.e., have only the two sentinel nodes). It is easy to maintain a vari-
able that tracks the highest nonempty layer because whenever that changes, the
thread that causes the change must have the left sentinel locked. This ease is in
contrast to the nonblocking version, in which a race between concurrent remove
and add operations may result in the recorded height of the skip list being less
than the actual height of its tallest node.

4 Correctness

In this section, we sketch a proof for our skip-list algorithm. There are four
properties we want to show: that the algorithm implements a linearizable set,
that it is deadlock-free, that the contains operation is wait-free, and that the
underlying data structure maintains a correct skip-list structure, which we define
more precisely below.

4.1 Linearizability

For the proof, we make the following simplifying assumption about initialization:
Nodes are initialized with their key and height, their nexts arrays are initialized
to all null, and their fullyLinked and marked fields are initialized to false.

5 Comparing keys is expensive because, to maintain compatibility with Lea’s imple-
mentation, comparison invokes the compareTo method of the Comparable interface.

9

Furthermore, we assume for the purposes of reasoning that nodes are never
reclaimed, and there is an inexhaustible supply of new nodes (otherwise, we
would need to augment the algorithm to handle running out of nodes).

We first make the following observations: The key of a node never changes
(i.e., key = k is stable), and the marked and fullyLinked fields of a node are
never set to false (i.e., marked and fullyLinked are stable). Though initially
null, nexts[i] is never written to null (i.e., nexts[i] 6= null is stable). Also,
a thread writes a node’s marked or nexts fields only if it holds the node’s lock
(with the one exception of an add operation writing nexts[i] of a node before
linking it in at layer i).

From these observations, and by inspection of the code, it is easy to see
that in any operation, after calling findNode, we have preds[i]->key < v and
succs[i]->key ≥ v for all i, and succs[i]->key > v for i > lFound (the value
returned by findNode). Also, for a thread in remove, nodeToDelete is only set
once, and that unless that node was marked by some other thread, this thread
will mark the node, and thereafter, until it completes the operation, the thread’s
isMarked variable will be true. We also know by okToDelete that the node is
fully linked (and indeed that only fully linked nodes can be marked).

Furthermore, validation and the requirement to lock nodes before writing
them ensures that after successful validation, the properties checked by the val-
idation (which are slightly different for add and remove) remain true until the
locks are released.

We can use these properties to derive the following fundamental lemma:

Lemma 1. For a node n and 0 ≤ i ≤ n->topLayer:

n->nexts[i] 6= null =⇒ n->key < n->nexts[i]->key

We define the relation →i so that m →i n (read “m leads to n at layer i”) if
m->nexts[i] = n or there exists m′ such that m →i m′ and m′->nexts[i] = n;
that is, →i is the transitive closure of the relation that relates nodes to their
immediate successors at layer i. Because a node has (at most) one immediate
successor at any layer, the →i relation “follows” a linked list at layer i, and in
particular, the layer-i list of the skip list consists of those nodes n such that
LSentinel →i n (plus LSentinel itself). Also, by Lemma 1, if m →i n and
m →i n′ and n->key < n′->key then n →i n′.

Using these observations, we can show that if m →i n in any reachable state
of the algorithm, then m →i n in any subsequent state unless there is an action
that splices n out of the layer-i list, that is, an execution of line 141. This claim is
proved formally for the lazy-list algorithm in a recent paper [1], and that proof
can be adapted to this algorithm. Because n must already be marked before
being spliced out of the list, and because the fullyLinked flag is never set to
false (after its initialization), this claim implies that a key can be removed
from the abstract set only by marking its node, which we argued earlier is the
linearization point of a successful remove operation.

Similarly, we can see that if LSentinel →i n does not hold in some reachable
state of the algorithm, then it does not hold in any subsequent state unless there

10

is some execution of line 91 with n = newNode (as discussed earlier, the previous
line doesn’t change the list at layer-i because newNode is not yet linked in then).
However, the execution of that line occurs while newNode is being inserted and
before newNode is fully linked. Thus, the only action that adds a node to a list
at any level is the setting of the node’s fullyLinked flag.

Finally, we argue that if a thread finds a marked node then the key of that
node must have been absent from the list at some point during the execution
of the thread’s operation. There are two cases: If the node was marked when
the thread invoked the operation, the node must have been in the skip list at
that time because marked nodes cannot be added to the skip list (only a newly
allocated node can be added to the skip list), and because no two nodes in the
skip list can have the same key, no unmarked node in the skip list has that key.
Thus, at the invocation of the operation, the key is not in the skip list. On the
other hand, if the node was not marked when the thread invoked the operation,
then it must have been marked by some other thread before the first thread
found it. In this case, the key is not in the abstract set immediately after the
other thread marked the node. This claim is also proved formally for the simple
lazy list [1], and that proof can be adapted to this algorithm.

4.2 Maintaining the skip-list structure

Our algorithm guarantees that the skip-list structure is preserved at all times.
By “skip-list structure”, we mean that the list at each layer is a sublist of the
lists at lower layers. It is important to preserve this structure, as the complexity
analysis for skip lists requires this structure.

To see that the algorithm preserves the skip-list structure, note that linking
new nodes into the skip list always proceeds from bottom to top, and while
holding the locks on all the soon-to-be predecessors of the node being inserted.
On the other hand, when a node is being removed from the list, the higher layers
are unlinked before the lower layers, and again, while holding locks on all the
immediate predecessors of the node being removed.

This property is not guaranteed by the lock-free algorithm. In that algorithm,
after linking a node in the bottom layer, links the node in the rest of the layers
from top to bottom. This may result in a state of a node that is linked only in
its top and bottom layers, so that the list at the top layer is not a sublist of
the list at the layer immediately beneath it, for example. Moreover, attempts to
link in a node at any layer other than the bottom are not retried, and hence this
state of nonconformity to the skip-list structure may persist indefinitely.

4.3 Deadlock freedom and wait-freedom

The algorithm is deadlock-free because a thread always acquires locks on nodes
with larger keys first. More precisely, if a thread holds a lock on a node with
key v then it will not attempt to acquire a lock on a node with key greater than
or equal to v. We can see that this is true because both the add and remove

methods acquire locks on the predecessor nodes from the bottom layer up, and

11

Sun FireTM T2000 Sun EnterpriseTM 6500

Operations: 9% add, 1% remove, 90% contains
Range: 200,000

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy
Lea
Seq

Operations: 9% add, 1% remove, 90% contains
Range: 200,000

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t Lazy

Lea
Seq

Operations: 9% add, 1% remove, 90% contains
Range: 2,000,000

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy
Lea
Seq

Operations: 9% add, 1% remove, 90% contains
Range: 2,000,000

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy
Lea
Seq

Fig. 8. Throughput in operations per millisecond of 1,000,000 operations, with 9% add,
1% remove, and 90% contains operations, and a range of either 200,000 or 2,000,000.

the key of a predecessor node is less than the key of a different predecessor node
at a lower layer. The only other lock acquisition is for the node that a remove

operation deletes. This is the first lock acquired by that operation, and its key
is greater than that of any of its predecessors.

That the contains operation is wait-free is also easy to see: it does not
acquire any locks, nor does it ever retry; it searches the list only once.

5 Performance

We evaluated our skip-list algorithm by implementing in the Java programming
language, as described earlier. We compared our implementation against Doug
Lea’s nonblocking skip-list implementation in the ConcurrentSkipListMap class
of the java.util.concurrent package, which is part of the JavaTM SE 6 plat-
form; to our knowledge, this is the best widely available concurrent skip-list
implementation. We also implemented a straightforward sequential skip list, in
which methods were synchronized to ensure thread safety, for use as a baseline
in these experiments. We descibe some of the results we obtained from these
experiments in this section.

12

Sun FireTM T2000 Sun EnterpriseTM 6500

Operations: 20% add, 10% remove, 70% contains
Range: 200,000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70

Threads

T
h

ro
u

g
h

p
u

t

Lazy
Lea
Seq

Operations: 20% add, 10% remove, 70% contains
Range: 200,000

0

500

1000

1500

2000

2500

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy
Lea
Seq

Operations: 20% add, 10% remove, 70% contains
Range: 2,000,000

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy
Lea
Seq

Operations: 20% add, 10% remove, 70% contains
Range: 2,000,000

0

200

400

600

800

1000

1200

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy
Lea
Seq

Fig. 9. Throughput in operations per millisecond of 1,000,000 operations with 20% add,
10% remove, and 70% contains operations, and range of either 200,000 or 2,000,000.

We present results from experiments on two multiprocessor systems with
quite different architectures. The first system is a Sun FireTM T2000 server,
which is based on a single UltraSPARC R© T1 processor containing eight com-
puting cores, each with four hardware strands, clocked at 1200 MHz. Each four-
strand core has a single 8-KByte level-1 data cache and a single 16-KByte in-
struction cache. All eight cores share a single 3-MByte level-2 unified (instruction
and data) cache, and a four-way interleaved 32-GByte main memory. Data ac-
cess latency ratios are approximately 1:8:50 for L1:L2:Memory accesses. The
other system is an older Sun EnterpriseTM 6500 server, which contains 15 sys-
tem boards, each with two UltraSPARC R© II processors clocked at 400 MHz
and 2 Gbytes of RAM for a total of 30 processors and 60 Gbytes of RAM. Each
processor has a 16-KByte data level-1 cache and a 16-Kbyte instruction cache
on chip, and a 8-MByte external cache. The system clock frequency is 80 MHz.

We present results from experiments in which, starting from an empty skip
list, each thread executes one million (1,000,000) randomly chosen operations.
We varied the number of threads, the relative proportion of add, remove and
contains operations, and the range from which the keys were selected. The key
for each operation was selected uniformly at random from the specified range.

13

Sun FireTM T2000 Sun EnterpriseTM 6500

Operations: 50% add, 50% remove, 0% contains
Range: 200,000

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy
Lea

Operations: 50% add, 50% remove, 0% contains
Range: 200,000

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy
Lea

Fig. 10. Throughput in operations per millisecond of 1,000,000 operations, with 50%
add and 50% remove operations, and a range of 200,000

In the graphs that follow, we compare the throughput in operations per
millisecond, and the results shown are the average over six runs for each set of
parameters.

Figure 8 presents the results of experiments in which 9% of the operations
were add operations, 1% were remove operations, and the remaining 90% were
contains operations, where the range of the keys was either two hundred thou-
sand or two million. The different ranges give different levels of contention,
with significantly higher contention with the 200,000 range, compared with the
2,000,000 range. As we can see from these experiments, both our implementation
and Lea’s scale well (and the sequential algorithm, as expected, is relatively flat).
In all but one case (with 200,000 range on the older system), our implementation
has a slight advantage.

In the next set of experiments, we ran with higher percentages of add and
remove operations, 20% and 10% respectively (leaving 70% contains opera-
tions). The results are shown in Figure 9. As can be seen, on the T2000 system,
the two implementations have similar performance, with a slight advantage to
Lea in a multiprogrammed environment when the range is smaller (higher con-
tention). The situation is reversed with the larger range. This phenomenon is
more noticeable on the older system: there we see a 13% advantage to Lea’s
implementation on the smaller range with 64 threads, and 20% advantage to
our algorithm with the same number of threads when the range is larger.

To explore this phenomenon, we conducted an experiment with a significantly
higher level of contention: half add operations and half remove operations with
a range of 200,000. The results are presented in Figure 10. As can be clearly
seen, under this level of contention, our implementation’s throughput degrades
rapidly when approaching the multiprogramming zone, especially on the T2000
system. This degradation is not surprising: In our current implementation, when
an add or remove operation fails validation, or fails to acquire a lock immediately,
it simply calls yield; there is no proper mechanism for managing contention.

14

Since the add and remove operations require that the predecessors seen during
the search phase be unchanged until they are locked, we expect that under high
contention, they will repeatedly fail. Thus, we expect that a back-off mechanism,
or some other means of contention control, would greatly improve performance
in this case. To verify that a high level of conflict is indeed the problem, we
added counters to count the number of retries executed by each thread during
the experiment. The counters indeed show that many retries are executed on
a 64 threads run, especially on the T2000. Most of the retries are executed by
the add method, which makes sense because the remove method marks the node
to be removed before searching its predecessors in lower layers, which prevents
change of these predecessor’s next pointers by a concurrent add operation.

6 Conclusions

We have shown how to construct a scalable, highly concurrent skip list using
a remarkably simple algorithm. The principal open question is whether we can
improve the algorithm’s performance at high levels of contention. One simple
approach is to use a more sophisticated back-off scheme when synchronization
conflicts are detected. Another intriguing approach is to allow the randomness of
the skip-list’s height to be compromised under high contention. In the algorithm
presented here, when a thread adds a new item, it gives up and retries if it
encounters a synchronization conflict when linking the item at any level. In
principle, a thread that encounters a conflict when linking the item at layer
` > 0 could simply stop there, leaving the item linked at levels zero to ` − 1,
acting as if it had randomly chosen ` − 1. The resulting data structure, while
structurally still a skip list, would be a little flatter than it should be. Whether
this approach is effective is the subject of future work.

References

1. Colvin, R., Groves, L., Luchangco, V., and Moir, M. Formal verification of a
lazy concurrent list-based set. In Proceedings of Computer-Aided Verification (Aug.
2006).

2. Fraser, K. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2004.
3. Heller, S., Herlihy, M., Luchangco, V., Moir, M., Shavit, N., and

Scherer III, W. N. A lazy concurrent list-based set algorithm. In Proceedings

of 9th International Conference on Principles of Distributed Systems (Dec. 2005).
4. Herlihy, M., Luchangco, V., and Moir, M. The repeat offender problem: A

mechanism for supporting dynamic-sized, lock-free data structures. In Proceedings

of Distributed Computing: 16th International Conference (2002).
5. Herlihy, M., and Wing, J. Linearizability: A correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems 12, 3 (July
1990), 463–492.

6. Michael, M. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE

Transactions on Parallel and Distributed Systems 15, 6 (June 2004), 491–504.
7. Pugh, W. Skip lists: A probabilistic alternative to balanced trees. Communications

of the ACM 33, 6 (June 1990), 668–676.

15

