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Abstract. We define the Repeat Offender Problem (ROP). Elsewhere,
we have presented the first dynamic-sized, lock-free data structures that
can free memory to any standard memory allocator—even after thread
failures—without requiring special support from the operating system,
the memory allocator, or the hardware. These results depend on a solu-
tion to the ROP problem. Here we present the first solution to the ROP
problem and its correctness proof. Our solution is implementable in most
modern shared memory multiprocessors.

1 Introduction

A lock-free data structure is dynamic-sized if it can grow and shrink over time.
Modern programming environments typically provide support for dynamically
allocating and freeing memory (for example, the malloc and free library calls).
A data structure is lock-free if it guarantees that after a finite number of steps of
any operation on the data structure, some operation completes. Lock-free data
structures avoid many problems associated with the use of locking, including
convoying, susceptibility to failures and delays, and, in real-time systems, priority
inversion.

This paper presents a new memory management mechanism for dynamic-
sized lock-free data structures. Designing such data structures is not easy: a
number of papers describe clever and subtle ad-hoc algorithms for relatively
mundane data structures such as stacks [14], queues [11], and linked lists [15, 5].

We define an abstract problem, the Repeat Offender Problem (ROP), that
captures the essence of the memory management problem for dynamic-sized lock-
free data structures. Any solution to ROP can be used to permit dynamic-sized
lock-free data structure implementations to return unused memory to standard
memory allocators. We have formulated this problem to support the use of one
or more “worker” threads, perhaps running on spare processors, to do most of
the work in parallel with the application’s threads.

We present the first solution to the ROP problem, which we call “Pass-the-
Buck”. In this paper, we focus on the problem statement and a detailed but
informal explanation of the algorithm. Elsewhere [6], we show how to apply
ROP solutions to achieve the first truly dynamic-sized lock-free data structures,



and we evaluate one such implementation. (As we discuss in Section 3, Maged
Michael [10] has concurrently and independently developed a similar technique.)

In the remainder of this section, we discuss why dynamic-sized data struc-
tures are challenging to implement in a lock-free manner and then briefly sum-
marize previous related work.

Before freeing an object that is part of a dynamic-sized data structure (say,
a node of a linked list), we must ensure that no thread will subsequently modify
the object. Otherwise, a thread might corrupt an object allocated later that
happens to reuse some of the memory used by the first object. Furthermore, in
some systems, even read-only accesses to freed objects can be problematic: the
operating system may remove the page containing the object from the thread’s
address space, causing a subsequent access to crash the program because the
address is no longer valid [14].

The use of locks makes it relatively easy to ensure that freed objects are not
subsequently accessed because we can prevent access by other threads to (parts
of) the data structure while removing objects from it. In contrast, without locks,
multiple operations may access the data structure concurrently, and a thread
cannot determine whether other threads are already committed to accessing the
object that it wishes to free (this can only be ascertained by inspecting the stacks
and registers of other threads). This is the root of the problem that our work
aims to address.

Below we discuss various previous approaches for dealing with the problem
described above.1 One easy approach is to use garbage collection (GC). GC
ensures that an object is not freed while any pointer to it exists, so threads
cannot access objects after they are freed. This approach is especially attractive
because recent experience (e.g., [2]) shows that GC significantly simplifies the
design of lock-free, dynamic-sized data structures. However, GC is not available
in all languages and environments, and in particular, we cannot rely on GC to
implement GC!

Another common approach is to tag values stored in objects. If we access
such values only through compare-and-swap (CAS) operations, we can ensure
that a CAS applied to a value after the object has been deallocated will fail [14,
12, 13]. This approach implies that the memory used for tag values can never be
used for anything else. One way to ensure that tag memory is never reused is
for the application itself to maintain an explicit pool of objects not currently in
use [14, 12].

Rather than returning an unused object to the environment’s memory man-
agement subsystem (say, via the free library call), the application places it into
its own object pool. An important limitation of application-specific pools is that
the application’s data structures are not truly dynamic-sized: if the data struc-
tures grow large and subsequently shrink, then the application’s object pool con-
tains many objects that cannot be coalesced or reused by other applications. In

1 These approaches are all forms of type-stable memory (TSM), defined by Greenwald
[4] as follows: “TSM [provides] a guarantee that an object O of type T remains type
T as long as a pointer to O exists.”



fairness, object pools can provide performance advantages for some applications
under some circumstances, bypassing calls to the environment’s general-purpose
memory allocator.

Elsewhere [6], we show how to eliminate object pools from Michael and
Scott’s lock-free FIFO queue implementation [12] using the techniques presented
in this paper. We also show how to combine the best of both approaches, con-
structing application-specific object pools that can free excess unused objects to
the environment’s memory allocator. We also present performance results that
show the overhead of making these data structures dynamic-sized is negligible
in the absence of contention, and low in all cases. We believe these are the first
lock-free, dynamic-sized concurrent data structures that can continue to reclaim
memory even after threads fail.

Valois [15] proposed an approach in which the memory allocator maintains
reference counts for objects to determine when they can be freed. An object’s
reference count may be accessed even after the object has been released to the
environment’s memory allocator. This behavior restricts what the memory al-
locator can do with released objects (for example, released objects cannot be
coalesced). Thus, this approach shares the principal disadvantages of explicit
object pools. Valois’s approach requires the memory allocator to support certain
nonstandard functions, which may make it difficult to port applications to new
platforms. Finally, the space overhead for per-object reference counts may be
prohibitive. (In [3], we proposed a similar approach that does allow memory al-
locators to be interchanged, but depends on double compare-and-swap (DCAS),
which is not widely supported.)

Our goal is to permit dynamic-sized lock-free data structure implementa-
tions to free unneeded memory to the environment’s memory allocator through
standard interfaces, ensuring that memory allocators can be switched with ease,
and that freed memory is not subsequently accessed, permitting the memory
allocator to unmap those pages.

Interestingly, the previous work that comes closest to meeting this goal pre-
dates the work discussed above by almost a decade. Treiber [14] proposes a
technique called “Obligation Passing”. The instance of this technique for which
Treiber presents specific details is in the implementation of a lock-free linked
list supporting search, insert, and delete operations. This implementation allows
freed nodes to be returned to the memory allocator through standard inter-
faces and without requiring any special functionality of the memory allocator.
Nevertheless, Obligation Passing employs a “use counter” such that memory is
reclaimed only by the “last” thread to access the linked list in any period. As
a result, this implementation can be prevented from ever recovering any mem-
ory by a failed thread (which defeats one of the main purposes of using lock-free
implementations). Another disadvantage of this implementation is that the Obli-
gation Passing code is bundled together with the linked-list maintenance code
(all of which is presented in assembly code). Because it is not clear what aspects
of the linked-list code are depended upon by the Obligation Passing code, it is
difficult to apply this technique to other situations.
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Fig. 1. Tranisition diagram for value v.

2 The Repeat Offender Problem

In this section, we specify the Repeat Offender Problem (ROP). Informally, we
are given a set of uninterpreted values, each of which can be one of three states:
free, injail, or escaping. Initially, all values are free. We are given a set of clients

that interact with values. At any time, a client can Arrest a free value, causing it
to become injail, or it can cause an injail value to become escaping. An escaping

value can finish escaping and become free again.
Clients use values, but must never use a value that is free. A client can

attempt to prevent a value v from escaping (becoming free) by “posting a guard”
on v. If, however, the guard is posted too late, v may escape anyway. To be safe,
a client first posts a guard on v, and then checks whether v is still injail. If so,
then a ROP solution must ensure that v does not escape before the guard is
removed or redeployed.

Our motivation is to use ROP solutions to allow threads (clients) to avoid
dereferencing (using) a pointer (value) to an object that has been freed. In this
context, an injail pointer is one that has been allocated (arrested) since it was
last freed, and can therefore be used.

It is sometimes possible for a client p to determine independently of ROP
that a value it wants to use will remain injail until p uses the value (see [6]). In
this case, p can use the value without posting a guard.

To support these interactions, ROP solutions provide the following proce-
dures. A thread posts a guard g on a value v by invoking PostGuard(g,v), which
removes the guard from any value it previously guarded. (A special null value is
used to stand down the guard, that is, to remove the guard from the previously
guarded value without posting the guard on a new value). A thread causes a
set of values S to begin escaping by invoking Liberate(S); the application must
ensure that each value in S is injail before this call, and the call causes each
value to become escaping. The Liberate procedure returns a (possibly different)
set of escaping values causing them to be liberated (each returned value becomes
free). These transitions are summarized in Figure 1. Finally, a thread can check
whether a value v is injail by invoking IsInJail(v); if this invocation returns true,
then v was injail at some point during the invocation (the converse is not nec-
essarily true, as explained later). Although the Arrest action is specific to the
application, the ROP solution must be aware of arrests in order to detect when
a free value becomes injail.

If a guard g is posted on a value v, and v is injail at some time t after g is
posted on v and before g is subsequently stood down or reposted on a different



value, then we say that g traps v from time t until g is stood down or reposted.
The main correctness condition for ROP is that it does not allow a value to
escape (i.e., become free) while it is trapped.

We now turn our attention to some additional important but mundane de-
tails, together with a formal specification of ROP. In some applications (for
example, [6]), a client must guard multiple values at the same time. Clients may
hire and fire guards by invoking the HireGuard and FireGuard procedures. Appli-
cations’ use of guards is expected to follow obvious well-formedness properties,
such as ensuring that a thread posts only those guards it employs.

A formal definition of ROP is given by the I/O automaton ([9]) shown in
Figure 2, explained below.

Notational Conventions Unless otherwise specified, p and q denote clients
(threads) from P , the set of all clients (threads); g denotes a guard from G, the
set of all guards; v denotes a value from V , the set of all values, and S and T

denote sets of values (i.e., subsets of V ). We assume that V contains a special
null value that is never used, arrested, or liberated.

The automaton consists of a set of environment actions and a set of ROP

output actions. Each action consists of a precondition for performing the action
and the effect on state variables of performing the action. Most environment
actions are invocations of ROP operations, and are paired with matching ROP
output actions that represent the system’s response to the invocations. For ex-
ample, the PostInvp(g, v) action models client p invoking PostGuard(g,v), and
the PostRespp() action models the completion of this procedure, and similarly
for HireGuard(), FireGuard(), and Liberate(). Finally, the Arrest(v) action models
the environment (application) arresting value v.

The state variable status[v] records the current status of value v: free, injail,
or escaping. Transitions between status values are caused by calls to and returns
from ROP procedures, as well as by the application-specific Arrest action. The
post variable maps each guard to the value (if any) it currently guards. The
pcp variable models the control flow (program counter) of client p, for example
ensuring that p does not invoke a procedure before the previous invocation com-
pletes; pcp also sometimes encodes procedure parameters. The guardsp variable
represents the set of guards currently employed by client p. The numEscaping

variable is an auxiliary variable used to specify nontriviality properties, as dis-
cussed later. Finally, trapping maps each guard g to a boolean value that is true
iff g has been posted on some value v, and has not subsequently been reposted
or stood down, and at some point since the guard was posted on v, v has been
injail (i.e., it captures the notion of guard g trapping the value on which it has
been posted). This is used by the LiberateResp action to determine whether v

can be returned. (Recall that a value should not be returned if it is trapped.)

Preconditions on the invocation actions specify assumptions about the cir-
cumstances under which the application invokes the corresponding ROP proce-
dures. Most of these preconditions are mundane well-formedness conditions such
as the requirement that a client posts only guards that it currently employs. The



actions

Environment ROP output

HireInvp() HireRespp(g)
FireInvp(g) FireRespp()
PostInvp(g, v) PostRespp()
IsInJailInvp(v) IsInJailRespp(b)
LiberateInvp(S) LiberateRespp(S)
Arrest(v)

state variables
For each client p ∈ P :

pcp: {idle, hire, fire, post(g, v),
injail(v), liberate} init idle

guardsp: set of guards init empty
For each value v ∈ V :

status[v]: {injail, escaping, free}
init free

For each guard g ∈ G:
post[g] : V init null;
trapping[g] : bool init false;

numEscaping : int init 0
transitions

HireInvp()
Pre: pcp = idle

Eff: pcp ← hire

FireInvp(g)
Pre: pcp = idle

g ∈ guardsp

post[g] = null
Eff: pcp ← fire

guardsp ← guardsp − {g}

PostInvp(g, v)
Pre: pcp = idle

g ∈ guardsp

Eff: pcp ← post(g, v)
post[g]← null
trapping[g]← false

IsInJailInvp(v)
Pre: pcp = idle

Eff: pcp ← injail(v)

LiberateInvp(S)
Pre: pcp = idle

for all v ∈ S,
v 6= null and status[v] = injail

Eff: pcp ← liberate

numEscaping← numEscaping + |S|
for all v ∈ S, status[v]← escaping

Arrest(v)
Pre: status[v] = free

v 6= null
Eff: status[v]← injail

for all g such that post[g] = v,
trapping[g]← true

HireRespp(g)
Pre: pcp = hire

g ∈ G
g /∈

⋃
q
guardsq

Eff: pcp ← idle

guardsp ← guardsp ∪ {g}

FireRespp()
Pre: pcp = fire

Eff: pcp ← idle

PostRespp()
Pre: for some g, v, pcp = post(g, v)
Eff: pcp ← idle

post[g]← v
trapping[g]← (status[v] = injail)

IsInJailRespp(b)
Pre: for some v, pcp = injail(v)

b ⇒ (status[v] = injail)
Eff: pcp ← idle

LiberateRespp(S)
Pre: pcp = liberate

for all v ∈ S,
status[v] = escaping

and for all g ∈
⋃

q
guardsq,

(post[g] 6= v or ¬trapping[g])
Eff: pcp ← idle

numEscaping← numEscaping − |S|
for all v ∈ S, status[v]← free

Fig. 2. I/O Automaton specifying the Repeat Offender Problem.



precondition for LiberateInv captures the assumption that the application passes
only injail values to Liberate, and the precondition for the Arrest action captures
the assumption that only free values are arrested. The application designer must
determine how these guarantees are made.

Preconditions on the response actions specify the circumstances under which
the ROP procedures can return. Again, most of these preconditions are mun-
dane. The interesting case is the precondition of LiberateResp, which states that
Liberate can return a value only if it has been passed to (some invocation of)
Liberate, it has not subsequently been returned by (any invocation of) Liberate,
and no guard g has been continually guarding the value since the last time it
was injail (this property is captured by trapping[g]).

Liveness Properties

As specified so far, a ROP solution in which Liberate always returns the empty
set, or simply does not terminate, is correct. Clearly, such solutions are unac-
ceptable because each escaping value represents a resource that will be reclaimed
only when the value is liberated (returned by some invocation of Liberate). One
might be tempted to specify that every value passed to a Liberate operation is
eventually returned by some Liberate operation. However, without special op-
erating system support, it is not possible to guarantee such a strong property
if threads can fail. Rather than proposing a single nontriviality condition, we
instead discuss a range of alternative conditions.

The state variable numEscaping counts the number of values currently es-
caping (that is, passed to some invocation of Liberate and not subsequently
returned from any invocation of Liberate). If we require a solution to ensure
that numEscaping is bounded by some function of application-specific quanti-
ties, we exclude the trivial solution in which Liberate always returns the empty
set. However, because this bound necessarily depends on the number of concur-
rent Liberate operations, and the number of values each Liberate operation is
invoked with, it does not exclude the solution in which Liberate never returns.

A combination of a boundedness requirement and some form of progress
requirement on Liberate operations seems to be the most appropriate way to
specify the nontriviality requirement. We later prove that the Pass The Buck
algorithm provides a bound on numEscaping that depends on the number of
concurrent Liberate operations. Because the bound (necessarily) depends on the
number of concurrent Liberate operations, if an unbounded number of threads fail
while executing Liberate, then an unbounded number of values can be escaping.
We emphasize, however, that our implementation does not allow failed threads
to prevent values from being freed in the future, as Treiber’s approach does [14].

Our Pass The Buck algorithm has two more desirable properties. First, the
Liberate operation is wait-free (that is, it completes after a bounded number of
steps, regardless of the timing behaviour of other threads). This is useful because
it allows us to calculate an upper bound on the amount of time Liberate will take
to execute, which is useful in determining how to schedule Liberate work.



Finally, our algorithm has a property we call value progress. Roughly, this
property guarantees that a value does not remain escaping forever provided
Liberate is invoked “enough” times (unless a thread fails).

Modular Decomposition

A key contribution of this paper is the insight that an effective way to solve ROP
in practice is to separate the implementation of the IsInJail operation from the
others.

In our experience using ROP solutions to implement dynamic-sized lock-free
data structures [6], values are used in a manner that allows threads to determine
whether a value is injail with sufficient accuracy for the particular application.
As a concrete example, when values represent pointers to objects that are part
of a concurrent data structure, these values become injail (allocated) before the
objects they refer to become part of the data structure, and are removed from
the data structure before being passed to Liberate. Thus, simply observing that
an object is still part of a data structure is sufficient to conclude that a pointer
to it is injail.

Because we intend ROP solutions to be used with application-specific imple-
mentations of IsInJail, the specification of this operation is somewhat weak: it
permits an implementation of IsInJail that always returns false. However, such
an implementation would be useless, usually because it would not guarantee
the required progress properties of the application that uses it. Because the
circumstances under which IsInJail can and should return true depend on the
application, we retain the weak specification of IsInJail, and leave it to applica-
tion designers to provide implementations of IsInJail that are sufficiently strong
for their applications. (Note that an integrated, application-independent imple-
mentation of this operation, while possible, would be expensive: it would have
to monitor and synchronize with all actions that potentially affect the status of
each value.)

This proposed modular decomposition suggests a methodology for imple-
menting dynamic-sized lock-free objects: use an “off-the-shelf” implementation
of an ROP solution for the HireGuard, FireGuard, PostGuard, and Liberate op-
erations, and then exploit specific knowledge of the application to design an
optimized implementation of IsInJail. More precisely, we decompose the ROP
I/O automaton into two component automata: the ROPlite automaton, and the
InJail automaton. ROPlite has the same environment and output actions as
ROP, except for IsInJailInv and IsInJailResp. InJail has input action IsInJailInv

and output action IsInJailResp. In addition, the InJail automaton “eavesdrops”
on ROPlite: all environment and output actions of ROPlite are input actions of
InJail (though in many cases the implementation of the InJail automata will
ignore these inputs because it can determine whether a value is injail without
them, as discussed above).

We present our Pass The Buck algorithm, which implements ROPlite in a
simple and practical way, in Section 3.



3 One Solution: Pass The Buck

In this section, we describe one ROP solution. Our primary goal when designing
this solution was to minimize the performance penalty to the application when
no values are being liberated. That is, the PostGuard operation should be imple-
mented as efficiently as possible, perhaps at the cost of a more expensive Liberate

operation. Such solutions are desirable for at least two reasons. First, PostGuard

is necessarily invoked by the application, so its performance always impacts ap-
plication performance. On the other hand, Liberate work can be done by a spare
processor, or by a background thread, so that it does not directly impact ap-
plication performance. Second, solutions that optimize PostGuard performance
are desirable for scenarios in which values are liberated infrequently, but we
must retain the ability to liberate them. An example is the implementation of
a dynamic-sized data structure that uses an object pool to avoid allocating and
freeing objects under “normal” circumstances, but can free elements of the ob-
ject pool when it grows too large. In this case, no liberating is necessary while
the size of the data structure is relatively stable.

Preliminaries The Pass-the-Buck algorithm is presented in pseudocode, which
should be self-explanatory. For convenience, we assume a shared-memory multi-
processor with sequentially consistent memory [8].2 We further assume that the
multiprocessor supports a compare-and-swap (CAS) instruction that accepts
three parameters: an address, an old value, and a new value. The CAS instruc-
tion atomically compares the contents of the address to the old value, and, if
they are equal, stores the new value at the address and returns true. If the com-
parison fails, no changes are made to memory, and the CAS instruction returns
false.

The Pass-the-Buck algorithm is shown in Figure 3. The GUARDS array al-
locates guards to threads. The POST array consists of one location per guard,
holding the value that guard is currently assigned to guard, if any, and null

otherwise. The Liberate operation uses the HANDOFF array to “hand off” re-
sponsibility for a value to a later Liberate operation if that value has been trapped
by a guard. (For ease of exposition, we assume a bound MG on the number of
guards simultaneously employed. It is not difficult to eliminate this assumption
by replacing the static GUARDS, POST and HANDOFF arrays with a linked
list; guards can be added as needed by appending nodes to the end of the list.)

The HireGuard and FireGuard procedures are based on a long-lived renaming
algorithm [1]. Each guard g has an entry GUARDS[g], initially false. Thread p

hires guard g by atomically changing GUARDS[g] from false (unemployed) to
true (employed); p attempts hiring each guard in turn until it succeeds (lines
2 and 3). The FireGuard procedure simply sets the guard back to false (line 7).

2 We have implemented our algorithms for multiprocessor architectures based on
SPARC r© processors that provide Total Store Ordering (TSO) [16], a memory model
weaker than sequential consistency that requires additional memory barrier instruc-
tions.



// handoff entry (CAS target)
typedef struct { value val; int ver } entry;

const int MG = . . . // max num guards

// shared variables
bool GUARDS[MG]; // initially false
value POST[MG]; // initially null
entry HANDOFF[MG]; // initially {null,0}
int MAXG= 0;

int HireGuard() {
1 int i = 0, max;
2 while (!CAS(&GUARDS[i],false,true))
3 i++;
4 while ((max = MAXG) < i)
5 CAS(&MAXG,max,i);
6 return i;
}

void FireGuard(int i) {
7 GUARDS[i] = false;
8 return
}

void PostGuard(int i, value v) {
9 POST[i] = v;
10 return
}

value set Liberate(value set vs) {
11 int i = 0;
12 while (i <= MAXG) {
13 int attempts = 0;
14 entry h = HANDOFF[i];
15 value v = POST[i];
16 if (v != null && vs.search(v)) {
17 while (true) {
18 if (CAS(&HANDOFF[i],

h, 〈v, h.ver+1〉)) {
19 vs.delete(v);
20 if (h.val != null)

vs.insert(h.val);
21 break;

}
22 attempts++;
23 if (attempts == 3) break;
24 h = HANDOFF[i];
25 if (attempts == 2

&& h.val != null)
break;

26 if (v != POST[i]) break;
}

27 } else {
28 if (h.val != null && h.val != v)
29 if (CAS(&HANDOFF[i],

h, 〈null, h.ver+1〉))
30 vs.insert(h.val);

}
31 i++;
}

32 return vs;
}

Fig. 3. Code for Pass The Buck.

The HireGuard procedure also maintains the shared variable MAXG, used by
the Liberate procedure to determine how many guards to consider. The Liberate

operation considers every guard for which a HireGuard operation has completed.
In the loop at lines 4 and 5, each HireGuard operation ensures that MAXG is at
least the index of the guard returned.

To make PostGuard as efficient as possible, it is implemented as a single store
of the value to be guarded in the specified guard’s POST entry (line 9).

The most interesting part of the Pass-the-Buck algorithm lies in the Liberate

procedure. Recall that Liberate should return a set of values that have been
passed to Liberate and have not since been returned by Liberate (i.e., escaping

values), subject to the constraint that Liberate cannot return a value that has
been continuously guarded by the same guard since some point when it was injail



(i.e., Liberate must not return trapped values). The Liberate procedure maintains
a set of escaping values, initially those values passed to it. It checks each guard,
removing any values in the set that may be trapped and leaving them behind
for later Liberate operations. It also adds to its set values that were left behind
by previous Liberate operations but are no longer trapped. After it has checked
all guards, it returns the values that remain in its value set.

Suppose thread p is executing a call to Liberate, value v is in the p’s value
set, and guard g is guarding v. To ensure that Liberate is wait-free, p must either
determine that g is not trapping v, or remove v from its value set. To guarantee
value progress, if p removes v from its set, then it must ensure that v will be
examined by later calls to Liberate. The interesting aspects of the Pass-the-Buck
algorithm concern how threads determine that a value is not trapped, and how
they store values while keeping space overhead for stored values low.

The loop at lines 12 through 31 iterates over all guards ever hired. For each
guard, if p cannot determine for some value v in its set that v is not trapped
by that guard, then p attempts to “hand off” that value (there can be at most
one such value per guard). If p succeeds (line 18), it removes v from its set (line
19) and proceeds to the next guard (lines 21 and 31). Also, as explained in more
detail below, p might simultaneously add to its set a value handed off previously
by another Liberate operation; it can be shown that any such value is not trapped
by that guard. If p fails to hand v off, then it retries. If it fails repeatedly, it can
be shown that v is not trapped by that guard, so p can move on to the next
guard without removing v from its set (lines 23 and 25). When p has examined
all guards (see line 12), it can safely return any values remaining in its set (line
32).

The following lemma (proved in the full paper) is helpful for understanding
why the algorithm works.

Single Location Lemma: Each escaping value v is stored at a single guard
or is in the value set of a single Liberate operation (but not both). Also, no
non-escaping value is in any of these locations.

At lines 15 and 16, p determines whether the value currently guarded by g

(if any) is in its set. If so, p executes the loop at lines 17 through 26 in order
to either determine that the value—call it v—is not trapped, or to remove v

from its set. To avoid losing v in the latter case, p “hands off” v by storing it in
the HANDOFF array. Each entry of this array consists of a value and a version
number. Version numbers are incremented with each modification of the entry
for reasons discussed below. We assume version numbers are large enough that
they can be considered unique for practical purposes (see [13] for discussion and
justification).

Because at most one value is trapped by guard g at any time, a single location
HANDOFF[g] for each guard g is sufficient. To see why, observe that p attempts
to hand off v only if v is in p’s value set. If a value w was previously handed
off (i.e., it is in HANDOFF[g]), then the Single Location Lemma implies that
v 6= w, so w is not trapped by g. Thus, p can add w to its value set.



To hand v off, p uses a CAS operation to attempt to replace the value previ-
ously stored in HANDOFF[g] with v (line 18). If the CAS succeeds, p adds the
replaced value to its set (line 20). We explain below why it is safe to do so. If
the CAS fails, then p rereads HANDOFF[g] (line 24) and retries the hand-off.
The algorithm is wait-free because the loop completes after at most three CAS
operations (lines 13, 22, and 23).

As described so far, p picks up a value from HANDOFF[g] only if its value
set contains a value that is guarded by guard g. To ensure that a value does
not remain in HANDOFF[g] forever (violating the value progress property), if
p does not need to remove a value from its set, it still picks up any previously
handed off value and replaces it with null (lines 28 through 30).

We now consider each of the ways p can break out of the loop at lines 17
through 26, and explain why it is safe to do so. Suppose p exits the loop after a
successful CAS at line 18. As described earlier, p removes v from its set (line 19),
adds the previous value in HANDOFF[g] to its set (line 20), and moves on to
the next guard (lines 21 and 31). Why is it safe to take the previous value w of
HANDOFF[g] to the next guard? The reason is that we read POST[g] (line 15
or 26) between reading HANDOFF[g] (line 14 or 24) and attempting the CAS
at line 18. Because each modification to HANDOFF[g] increments its version
number field, it follows that w was in HANDOFF[g] when p read POST[g].
Also, recall that w 6= v in this case. Therefore, when p read POST[g], w was
not guarded by g. Furthermore, because w remained in HANDOFF[g] from that
moment until the CAS, w cannot become trapped in this interval (because a
value can become trapped only while it is injail, and all values in the HANDOFF
array and in the sets of Liberate operations are escaping). The same argument
explains why it is safe to pick up the value replaced by null at line 29.

It remains to consider how p can break out of the loop without performing
a successful CAS. In each case, p can infer that v is not trapped by g, so it can
give up on its attempt to hand off v. If p breaks out of the loop at line 26, then v

is not trapped by g at that moment simply because it is not guarded by g. The
other two places where p may break out of the loop (lines 23 and 25) occur only
after the thread has executed several failed CAS operations. The full paper [7]
contains a detailed case analysis showing that in each case, v is not trapped.

Discussion

The Pass-the-Buck algorithm satisfies the value progress property because a
value cannot remain handed off at a particular guard forever if Liberate is exe-
cuted enough times. If a value v is handed off at guard g, then the first Liberate

operation to begin processing g after v is not trapped by g will ensure that v is
picked up and taken to the next guard (or returned from Liberate if g is the last
guard), either by that Liberate operation or by a concurrent Liberate operation.

As noted earlier, Michael [10] has independently and concurrently developed
a solution to a very similar problem. Michael’s algorithm buffers to-be-freed
values so that it can control the number of values passed to Scan (his equivalent
of the Liberate operation) at a time. This has the disadvantage that there are



usually O(GP ) values that could potentially be freed, but are not (where G is the
number of “hazard pointers”—the equivalent of guards—and P is the number
of participating threads). However, this technique allows him to achieve a nice
amortized bound on time spent per value freed. He also has weaker requirements
for Scan than we have for Liberate; in particular, Scan can return some values to
the buffer if they cannot yet be freed. This admits a very simple solution that uses
only read and write primitives (recall that ours requires CAS) and allows several
optimizations. However, it also means that if a thread terminates while values
remain in its buffer, then those values will never be freed, so his algorithm does
not satisfy the value progress property. (Michael alludes to possible methods for
handing off values to other threads but does not explain how this can be achieved
efficiently and wait-free using only reads and writes.) This is undesirable because
a single value might represent a large amount of resources, which would never be
reclaimed in this case. The number of such values is bounded by O(GP ). We can
perform the same optimizations and achieve the same amortized bound under
normal operation, while still retaining the value progress property (although we
would require threads to invoke a special wait-free operation before terminating
to achieve this). In this case, our algorithm would perform almost identically
to Michael’s (with a slight increase in overhead upon thread termination), but
would of course share the disadvantages discussed above, except for the lack of
value progress.

Elsewhere [6], we present a dynamic-sized lock-free FIFO queue constructed
by applying our ROP solution to the non-dynamic-sized implementation of
Michael and Scott [12] together with the non-dynamic-sized freelist of Treiber
[14]. Experiments show that the overhead of the dynamic-sized FIFO queue over
the non-dynamic-sized one of [12] is negligible in the absence of contention, and
low in all cases.

Michael has shown how to apply his technique to achieve dynamic-sized im-
plementations of a number of different data structures, including queues, double-
ended queues, list-based sets, and hash tables (see [10] for references). Because
the interfaces and safety properties of our approaches are almost identical, those
results can all be achieved using any ROP solution too. In addition, using Pass-
the-Buck would allow us to achieve value progress in those implementations.
Michael also identified a small number of implementations to which his method
is not applicable. In some cases, this may be because Michael’s approach is re-
stricted to use a fixed number of hazard pointers per thread; in contrast, ROP
solutions provide for dynamic allocation of guards. Furthermore, we have pre-
sented [6] a general methodology based on any ROP solution that can be applied
to achieve dynamic-sized versions of these data structures too. This methodol-
ogy is based on reference counts, and therefore has disadvantages such as space
and time overhead, and inability to reclaim cyclic garbage.



4 Concluding Remarks

We have defined the Repeat Offenders Problem (ROP), and presented one solu-
tion to this problem. Such solutions provide a mechanism for supporting mem-
ory management in lock-free, dynamic-sized data structures. The utility of this
mechanism has been demonstrated elsewhere [6], where we present what we be-
lieve are the first dynamic-sized, lock-free data structures that can continue to
reclaim memory even if some threads fail (although Maged Michael [10] has in-
dependently and concurrently achieved such implementations, as discussed in
Section 3).

By specifying the ROP as an abstract and general problem, we allow for
the possibility of using different solutions for different applications and settings,
without the need to redesign or reverify the data structure implementations that
employ ROP solutions. We have paid particular attention to allowing much of
the work of managing dynamically allocated memory to be done concurrently
with the application, using additional processors if they are available.

The ideas in this paper came directly from insights gained and questions
raised in our work on lock-free reference counting [3]. This further demonstrates
the value of research that assumes stronger synchronization primitives than are
currently widely supported.

Future work includes exploring other ROP solutions, and applying ROP so-
lutions to the design of other lock-free data structures. It would be particularly
interesting to explore the various ways for scheduling Liberate work.

Acknowledgments: We thank Steve Heller, Paul Martin, and Maged Michael
for useful feedback, suggestions, and discussions. In particular, Steve Heller sug-
gested formulating ROP to allow the use of “spare” processors for memory man-
agement work.
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