
Non-Blocking Concurrent FIFO Queues With Single Word Synchronization
Primitives

Claude Evequoz
University of Applied Sciences Western Switzerland

1400 Yverdon-les-Bains, Switzerland
Claude.Evequoz@heig-vd.ch

Abstract

We present 2 efficient and practical non-blocking
implementations of a concurrent array-based FIFO
queue that are suitable for both multiprocessor as well
as preemptive multithreaded systems. It is well known
that concurrent FIFO queues relying on mutual exclu-
sion cause blocking, which have several drawbacks
and degrade overall system performance. Link-based
non-blocking queue algorithms have a memory man-
agement problem whereby a removed node from the
queue can neither be freed nor reused because other
threads may still be accessing the node. Existing solu-
tions to this problem introduce a fair amount of over-
head and, when the number of threads that can access
the FIFO queue is moderate to high, are shown to be
less efficient compared to array-based algorithms,
which inherently do not suffer from this problem. In
addition to being independent on advance knowledge
of the number of threads that can access the queue, our
new algorithms improve on previously proposed algo-
rithms in that they do not require any special instruc-
tion other than a load-linked/store-conditional or a
compare-and-swap atomic instruction both operating
on pointer-wide number of bits. Our new algorithms
are thus portable to a broader range of architectures.

Keywords: Concurrent queue, lock-free, compare-and-
swap (CAS), load-linked/store-conditional (LL/SC).

1. Introduction

Lock-free data structures have received a large
amount of interest as a mechanism that ensures that the
shared data is always accessible to all threads and a
temporarily or permanently inactive thread cannot ren-
der the data structure inaccessible. A concurrent data
structure implementation is non-blocking (or lock-free)

if it guarantees that at least one thread is guaranteed to
finish its operation on the shared objects in a finite
number of steps, even if there are other halted or de-
layed threads currently accessing the shared data
structure. By definition, non-blocking implementations
have no critical sections in which preemption can oc-
cur. These data structures also do not require any
communication with the kernel and have been repeat-
edly reported to perform better than their counterparts
implemented with critical sections [10].

First-in-first-out (FIFO) queues are an important ab-
stract data structure lying at the heart of most operating
systems and application software. They are needed for
resource management, message buffering and event
handling. As a result, the design of efficient imple-
mentations of FIFO queues has been widely re-
searched. A FIFO queue supports 2 operations: an en-
queue operation inserts a new item at the tail of the
queue, and a dequeue operation removes an item from
the head of the queue if the queue is not empty.

This paper addresses the problem of designing
practical non-blocking FIFO queues based on a
bounded circular array using only widely available
pointer-wide atomic instructions. We begin by re-
viewing previous work done on FIFO queues and the
memory reclamation problem inherent in link-based
algorithms. Of particular interest in that section are
algorithms that can adapt to a varying number of
threads; these algorithms are called population-oblivi-
ous [5]. Section 3 presents the problems that must to be
dealt with when designing non-blocking circular array
FIFO queues. Section 4 introduces our first algorithm,
which is population-oblivious and has a space con-
sumption depending only on the number of items in the
queue. Our second algorithm, presented in Section 5,
applies to a broader range of architectures but unlike
our first algorithm, the space consumption also de-
pends on the maximum number of threads that ac-

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.82

397

cessed the queue at any given time. This algorithm is
based on the popular compare-and-swap (CAS) in-
struction, which takes 3 parameters: the address of a
memory location, an expected value, and a new value.
The new value is written into the memory location if
and only if the location holds the expected value and
the returned value is a Boolean indicating whether the
write occurred. Performance evaluations of our algo-
rithms are conducted in Section 6. The paper concludes
in Section 7.

2. Related Work

Practical algorithms of non-blocking FIFO queues
fall into two categories. The first category consists of
algorithms based on finite or infinite arrays. Herlihy
and Wing [3] gave a non-blocking FIFO queue algo-
rithm requiring an infinite array. Wing and Gong [16]
later removed the requirement of an infinite array. In
their implementation, the running time of the dequeue
operation is proportional to the number of completed
enqueue operations since the creation of the queue.
Treiber [13] also proposed a similar algorithm that
does not use an infinite array. Although the enqueue
operation requires only a single step, the running time
needed for the dequeue operation is proportional to the
number of items in the queue. These last two algo-
rithms are inefficient for large queue lengths and many
dequeue attempts. Valois [15] also presented an algo-
rithm based on a bounded circular array. However,
both enqueue and dequeue operations require that two
array locations which may not be adjacent be simulta-
neously updated with a CAS primitive. Unfortunately
this primitive is not available on modern processors.
Shann et al. [12] present an efficient FIFO queue based
on a circular array where each array element stores 2
fields: a data field and a reference counter field that
prevents the so-called ABA problem (see section 3).
Their algorithm is useful for processors that offer
atomic instructions that can manipulate an array ele-
ment as a whole. Because certain 32-bit architectures
(e.g., PowerPC and Pentiums) support 32- and 64-bit
atomic instructions, the data field may also represent a
pointer to a record when there is a need to expand the
data field size. Current and emerging 64-bit architec-
tures do not provide atomic access to more than 64-bit
quantities, thus it is no longer possible to pack a large
reference counter along with pointer-wide values in 64-
bit applications. When application software exploiting
these 64-bit capabilities becomes widespread [2], their
algorithm will be of limited use. Tsigas and Zhang [14]
proposed the first practical non-blocking FIFO queue
based on a circular array using single word synchroni-
zation primitives found on all modern architectures and
suitable for 64-bit applications. Their algorithm applies

only to queued items that are pointers to data and they
show that it outperforms link-based FIFO queues.
However, for queueing operations to appear as FIFO
(linearizability property [3]), the algorithm assumes
that an enqueue or a dequeue operation cannot be pre-
empted by more than s similar operations, where s is
the array size. Their algorithm is therefore not popula-
tion-oblivious.

The second category of FIFO queues is imple-
mented by a linked list of queued nodes. Michael and
Scott [9] proposed an implementation based on a sin-
gle-linked list where an enqueue operation requires 2
successful CAS operations and a dequeue operations
needs a single successful CAS. More recently, Ladan-
Mozes and Shavit [6] presented an algorithm based on
a doubly-linked list requiring one successful atomic
synchronization instruction per queue operation. Al-
though there are more pointers to update, these are
preformed by simple reads and writes. They show that
their algorithm consistently performs better than the
single-linked list suggested in [9].

Although the advantage of linked-based FIFO
queues over array-based implementations is that the
size of the queue and the number of nodes it holds may
vary dynamically, these queues are subject to a mem-
ory management problem. A dequeued node can be
freed and made available for reuse only when the de-
queuer is the only thread accessing the node. The easi-
est approach to deal with this problem is to ignore it
and assume the presence of a garbage collector. How-
ever not all systems and languages provide garbage
collector support. Another approach is to never free the
node and to store it in a free pool for subsequent reuse
once it is dequeued. When a new node is required, the
node is obtained from the free pool. An important
drawback of this approach is that the actual size of
FIFO is equal to the maximum queue size since its
initialization and is not really dynamically sized.
Valois [15] presented an approach that actually frees a
dequeued node. The mechanism associates a reference
counter field with each node. Each time a thread ac-
cesses a node, it increments the node's reference
counter; when the thread no longer accesses the node,
it decrements the counter. A node can be freed only if
the value of its reference counter drops to zero. Al-
though the scheme is simple, a basic problem arises
making this scheme impractical. The scheme proposed
in [8,15] involves 3 steps: (1) a pointer is set to the
node that is to be accessed, (2) the reference counter of
the possibly reclaimed node is then incremented, and
(3) the pointer is verified that it still points to the cor-
rect node. Should the verification step (3) fail, the ref-
erence counter is decremented and all three steps re-
peated. Note that the reference counter of a node can
be accessed and modified even after it has been freed.

398

None of the reclaimed node can thus be definitely re-
leased to the memory allocator and reused for arbitrary
purposes without possibly corrupting memory loca-
tions; all must again be stored in some free pool.
Detlefs et al. [1] alleviate the above problem by per-
forming steps (1) and (2) atomically. But because the
reference to a node and its associated reference counter
are not contiguous in memory, the needed primitive
requires the atomic update of two arbitrary memory
locations that is not supported in hardware by any
modern processor.

Michael [10] presented a lock-free memory man-
agement technique that allows safe memory reclama-
tion. Whenever a thread is about to reference a node, it
publishes the address of the node in a global memory
location. When the dequeuer removes a node from the
queue, it scans the published accesses of the other
threads. If a match is not found, the node may be safely
freed. Otherwise the node is stored until a subsequent
scan. A similar scheme, but not using pointer-wide
instructions, was also independently proposed by Her-
lihy et al. [4].

Doherty et al. [2] present the first link-based FIFO
queue that is population-oblivious and has a space con-
sumption depending only on the number of queued
items and the number of threads currently accessing
the queue. However, their algorithm introduces signifi-
cant overheads and trades memory space for computa-
tional time.

3. ABA Problem

The ABA problem is a well-known problem in the
context of data structures implemented by CAS state-
ments. The desired effect of a CAS operation is that it
should succeed only if the value of a location does not
change since the previous reading of the contents of the
location. A thread may read value A from a shared
location and then attempt to modify the contents of the
location from A to some other value. However it is
possible that between the read and the CAS other
threads change the contents of the location from A to B
and then back to A again. The CAS therefore succeeds
when it should fail. The semantics of read and CAS
prevent them from detecting that a shared variable has
not been written after the initial read.

In a circular list based on a finite array, there are 3
different ABA problem sources. First, the Head and
Tail indices are each prone to the ABA problem,
which we call the index-ABA problem. Next, each slot
in the array holds 2 different value types: a queued data
item and a null item that indicates that the slot is empty
and available for reuse. Each of these 2 data values
gives rise to an ABA problem that may be solved dif-
ferently. In order to distinguish them, we refer to them

as the data-ABA and the null-ABA problem respec-
tively. In the following we illustrate an instance of how
each identified ABA problem manifests itself and the
means to elude the problem.

The enqueue and dequeue operations increment
their respective indices once they have inserted or re-
moved an item in or from the array. If these operations
are delayed immediately prior to the increment but
after modifying the contents of the array, other threads
may successfully complete s–1 identical operations and
leave the index concerned by the delayed operation in
the same state, where s is the size of the circular array.
When the delayed operation resumes, it wrongly ad-
justs its index. Figure 1 illustrates such a scenario.

The index-ABA problem can easily be dealt with if
we let each counter occupy a word and only increment
these counters. The enqueue and dequeue functions can
then map the counter into a valid index before access-
ing an array slot with a modulo operator. Although this
solution does not guarantee that the ABA problem will
not occur, its likelihood is extremely remote.

A simple example of the data-ABA problem can be
given for an array having 2 slots. Assume that the array
initially contains a single item A. Since a dequeue op-
eration must first read the contents of the slot before
removing it, a dequeuer may read item A and then be
preempted before it gets a chance to remove A from the
array. During its preemption, another thread may de-
queue item A and then successively enqueue items B
and A. The array is now full and when the preempted
dequeue operation resumes, it wrongly removes item A
instead of B. The implementation proposed in [14]
circumvents this difficulty by assuming that the dura-
tion of preemption cannot be greater than the time for
the indices to rewind themselves. This assumption may
result into an exceedingly oversized array or be impos-
sible to meet when the upper bound on the number of
threads is unknown.

If we assume for the ease of explanation that the ar-
ray is infinite, the array can be divided into 3 consecu-
tive intervals: a possibly empty succession of empty
slots that held removed items, a possibly empty series
of enqueued items, and finally a series of empty slots
that never held any item. A null-ABA problem occurs
when an enqueuer mistakenly inserts an item into a
free slot that belongs to the first interval. An enqueuer
reads the contents of the first slot in the 3rd interval,
notices that it is empty but gets preempted before in-
serting its item in the slot. Another thread may then
insert an item and dequeue all the items in the array.
When the enqueuer resumes, it incorrectly inserts its
item in the first interval of the array. This flaw is cor-
rected in [14] by cleverly having 2 empty indicators.
Initially the array slots are set to null0 (3rd interval)
and once items are removed from the array the slots are

399

marked with null1 to become part of the 1st interval.
When the head index rewinds to 0, the interpretations
of the null values are switched from their correspond-
ing intervals. The most common solution to this and
other ABA problems is to split each shared memory
location into 2 parts that are accessed simultaneously: a
part for a version number or counter and a part for the
shared data item; when a thread updates the memory
location it also increments the counter in the same
atomic operation. Because the version number is not
unbounded, this technique does not guarantee the ABA
scenario will not occur but it makes it extremely un-
likely. Shann et al. [12] rely on this technique to solve
the data-ABA and null-ABA problem for their FIFO
queue implemented by a circular array. Algorithm
designers using this technique usually assume that the
version number and the data item each occupy a single
word and that the architecture supports double-word
atomic operations. In practice, this assumption may be
valid for some 32-bit architectures, but it is invalid for
the emerging 64-bit architectures.

4. First Algorithm

Modern instruction-set architectures, such as
ARMv6 and above, DEC Alpha, MIPS II and
PowerPC processors, do not provide atomic primitives
that read and update a memory location in a single step
because it is much more complex than a typical RISC
operation and it is difficult to pipeline. Instead these
processors provide an alternative mechanism based on
two atomic instructions, load-linked (LL, also called
load-lock or load reserve) and store-conditional (SC).
The usual semantics of LL and SC assumed by most
algorithm designers are given in Figure 2. A shared
variable X accessed by these instructions can be re-
garded as a variable that has an associated shared set of
thread identifiers validX, which is initially empty. In-
struction LL returns the value stored in the shared lo-
cation X and includes the calling thread identifier in set
validX. Instruction SC checks if the calling thread's
identifier is in validX, and if so, clears validX and up-
dates the location before returning success; otherwise
the instruction returns failure.

LL(X) ≡ validX ∪ {threadID}; return X
SC(X,Y) ≡ if threadID ∈ validX then validX ← ∅;

 X ← Y; return true
else return false
end if

Figure 2. Equivalent atomic statements speci-
fying the theoretical semantics of LL/SC

Based on the semantics of the LL and SC instruc-
tions, we can design a FIFO queue that is immune to
ABA problems. Figure 3 shows our algorithm in a self-
explanatory pidgin C notation. For clarity, various type
casts are missing but pointer dereferencing obey strict
C notation. Following standard usage, all global vari-
ables have identifiers beginning with an uppercase
letter and variables completely in lowercase are local
to an operation.

Our FIFO queue is implemented as a circular list by
an array of Q_LENGTH slots named Q, along with two
indices named Head and Tail. An array slot contains
either a pointer to a data item or the value null to indi-
cate that it is currently free. Head refers to the first slot
of the queue that may hold an item. Tail designates
the next free slot where a new item can be inserted.
The queue is empty when Head is equal to Tail, and
it is full when Head + Q_LENGTH is equal to Tail.
We assume that Q_LENGTH is a power of 2 so that
Head and Tail can wraparound without skipping
array slots. Finally, the array slots are initialized to null
and the indices are set to 0 prior to calling an enqueue
or a dequeue operation.

To add a data item, the enqueue operation first reads
the current Tail value (line E5) and reserves the slot
it intends to insert the item into (line E9). The test on
line E10 verifies that the reserved slot still corresponds
to the one designated by Tail, and its purpose is to
avoid the null-ABA problem. After successfully re-
serving an array slot, the enqueuer checks the contents
of the slot. If it is empty, the enqueuer tries to insert its
item into it (line E15). On the other hand, if the re-
served slot is not empty, another concurrent thread has
successfully inserted an item but was preempted before
it had the chance to update Tail and the Tail value
read on line E5 is lagging behind. In this case, the en-

 0 1 2 3
Q: — — — — Tail = 0 Initially array Q is empty.
Q: A — — — Tail = 0 Thread T1 inserts item A into Q[0] and then gets preempted.
Q: A — — — Tail = 1 Thread T2 adjusts Tail in order to perform its insertion.
Q: A B C D Tail = 0 T2 inserts items B, C, and D, while adjusting Tail.
Q: — — — D Tail = 0 Thread T3 dequeues items A, B, and C.
Q: — — — D Tail = 1 T1 resumes and increments Tail. The next insertion will

 wrongly take place in Q[1].

Figure 1. Scenario with 3 threads illustrating the index-ABA problem

400

queuer helps the delayed thread and advances the
Tail index (line E13) on its behalf before restarting
its loop.

The dequeue operation removes the oldest item in
the queue and returns it to its caller. The first 10 lines
of the dequeue operation are identical to those of the
enqueue operation: A dequeuer reads and reserves the
array slot identified by the current Head index value.
The test on line D10 confirms that the marked slot is
indeed the oldest item that can be removed. Without
this check, a dequeuer can read the current Head in-
dex, say h, and be preempted anywhere between lines
D5 and D10. During this preemption, other threads can
enqueue and dequeue items wrapping the array as they
do so. When the preempted dequeuer resumes its exe-
cution and carries out the LL operation on line D9,
Q[h] may hold an item that is not the oldest. Figure 4
illustrates such a scenario for a queue with 5 slots.

After the test on line D10, the slot may be in one of
two states. If it is empty, the dequeuer can infer that the
Head index is falling behind since the dequeuer
checked that the queue was not empty (line D6) before
attempting to remove an item. In this case, the de-
queuer tries to update Head before restarting from the
beginning. On the other hand, if the slot is not empty,
the dequeuer attempts to substitute the slot for a null
and then, if it succeeds, tries to update Head before
returning the dequeued item.

5. Second Algorithm

Unfortunately, all architectures that support LL/SC
instructions do not support the full theoretical seman-
tics that we have described in Figure 2. These archi-
tectures have one or several of the following limita-

tions [11]:
1. There can be neither nesting nor interleaving of

LL/SC pairs.
2. There can be no memory access between a LL/SC

pair.
3. The cache coherence mechanism may allow the

SC instruction to fail spuriously if a cached word
is selected for replacement by the cache protocol
or when the executing thread is preempted.

4. The set of thread identifiers (see Figure 2) is re-
placed by a single bit per processor.

5. The reservation bit typically may also be associ-
ated to a set of memory locations and a normal
write to an address close to the one that was read
by a LL can clear the bit. Algorithms performing
such a write between LL/SC pairs can give rise to
various starvation and livelock problems.

More importantly, some architectures do not support
the LL/SC instructions at all, but have a CAS instruc-
tion instead. We extend the applicability of our LL/SC
based algorithm to these architectures. The basic idea
behind our CAS-based implementation is to replace an
accessed shared location with a specific thread-owned
tag. An update of the shared location is then allowed
only if its content matches the executing thread's tag.
In the following we elaborate on this scheme and pre-
sent our modified FIFO queue algorithm shown in
Figure 5.

Assume for the moment that each thread holds a
specific variable that can be accessed by all other par-
ticipating threads. This variable is passed as parameter
to our simulated LL instruction, which reads and re-
turns the content of a shared variable. The shared loca-
tion is read on line L5. If it holds an application related
data, the shared location is atomically replaced by the

 Q: array[0..Q_LENGTH-1] of *NODE; // Circular list initialized with null
 unsigned int Head, Tail; // Extraction and insertion indices

E1: BOOL Enqueue(NODE *node) { D1: NODE *Dequeue(void) {
E2: unsigned int t, tail; D2: unsigned int h, head;
E3: NODE *slot; D3: NODE *slot;
E4: while (true) { D4: while (true) {
E5: t = Tail; D5: h = Head;
E6: if (t == Head + Q_LENGTH) D6: if (h == Tail)
E7: return FULL_QUEUE; D7: return null;
E8: tail = t % Q_LENGTH; D8: head = h % Q_LENGTH;
E9: slot = LL(&Q[tail]); D9: slot = LL(&Q[head]);
E10: if (t == Tail) D10: if (h == Head)
E11: if (slot != null) { D11: if (slot == null) {
E12: if (LL(&Tail) == t) D12: if (LL(&Head) == h)
E13: SC(&Tail,t+1); D13: SC(&Head,h+1);
E14: } D14: }
E15: else if (SC(&Q[tail],node)) { D15: else if (SC(&Q[head],null)) {
E16: if (LL(&Tail) == t) D16: if (LL(&Head) == h)
E17: SC(&Tail,t+1); D17: SC(&Head,h+1);
E18: return OK; D18: return slot;
E19: } D19: }
E20: } D20: }
E21: } /* end of Enqueue */ D21: } /* end of Dequeue */

Figure 3. ABA problem-free implementation of a FIFO queue

401

address of the specific thread-owned variable, which
acts as a reservation marker. On the other hand, if the
shared location contains the address of another thread's
owned variable, the shared location is already reserved;
the application data is read by means of this variable
(line L8) before atomically substituting the location
with the address of the caller's owned variable. To
distinguish between application data and thread-owned
variables, we use the fact that modern 32- and 64-bit
architectures allocate memory blocks at addresses that
are evenly dividable by 2; therefore, the least signifi-
cant bit of a valid address is always 0. As our FIFO
array contains addresses to application nodes, the least
significant bit of an address is in excess and can be
used as an indicator. The atomic primitives operating
on these addresses need only be pointer-wide primi-
tives, and thus meet the requirement for the emerging
64-bit architectures. In the LL function of Figure 5,
odd valued addresses indicate thread-owned variables.
The hat symbol (^) in Figure 5 refers to C's bitwise xor
operator.

A similar scheme was proposed in [7], however,
theirs uses a thread identifier augmented by a version
tag rather than the address of an owned variable to
mark a reservation. The thread identifier is used as an
index into an array that serves as a placeholder for the
substituted value. The purpose of their version tag is to
avoid ABA problems associated with the replacement.
The resulting scheme uses only pointer-wide atomic
primitives but it is not population-oblivious because of
the fixed-sized array. Their scheme may however be
transformed into a population-oblivious one like the
one we expose below.

We next explain how threads acquire their owned
variable. The register and deregister operations that are
part of our algorithm are a simplification of those pro-
posed in [5], and which were designed to solve the
collect problem. Each thread that calls an enqueue or
dequeue operation requires a global variable that other
threads may consult in the simulated LL operation.
This global variable is acquired by a registration op-
eration. Once a thread no longer enqueues nor de-
queues data, its variable is no longer required but can-
not be freed because other threads may still access it
(lines L5, L7, L8 and L14). Consequently, allocated
variables are kept permanently in a list but other
threads may recycle them. If a thread needs to perform

more than a single operation on the array, its owned
variable may be reused only if other threads are not
currently accessing it. Assume that this is not the case,
a thread, say A, may substitute an array slot by its
owned variable and be preempted by another thread, B.
B can read the owned variable of A (line L5) and be
preempted by A before the CAS operation on line L12.
A may then finish its operation on the array and latter,
after many enqueues and dequeues by threads other
than B, reinsert its owned variable into the same array
slot currently referenced by B. If B now resumes, it
will wrongly succeed the CAS operation on line L12
and insert its owned variable with erroneous informa-
tion regarding the actual content of the array slot. To
circumvent this ABA problem, we simply use a refer-
ence counter that is incremented on line L7 and decre-
mented when an owned variable ceases to be accessed
(line L14). These operations are done by an atomic
FetchAndAdd instruction.

The data type used for the simulated LL/SC opera-
tions is called LLSCvar and contains a placeholder for
a FIFO slot, a reference counter indicating how many
threads are currently accessing it, and a link to the next
LLSCvar variable in the list. To acquire a LLSCvar
variable, a thread first traverses the First list and
tries to reclaim an unowned variable by setting its ref-
erence counter to 1 (line R4). If the CAS succeeds, an
available LLSCvar variable is found and returned (line
R5). If the thread reaches the end of the list, it assumes
there is no LLSCvar variable that can be recycled. The
thread then allocates a new LLSCvar variable and adds
it to the list following a simple LIFO policy—a FIFO
policy would require an extra variable. A simple retry-
loop with a CAS operation is used to add the new
owned variable to the list. The register operation takes
time and space that is a function of the maximum
number of threads that accessed the queue at any given
time. A thread must call ReRegister to check that
no other thread is accessing its owned variable between
any two consecutive operations on the array. This op-
eration either returns the same LLSCvar variable or
another one after deregistering the currently held
LLSCvar variable. The deregister operation removes
the owner's reference to the LLSCvar variable (line
DR2) so that it may be reclaimed by future register
operations, and takes constant time. If a thread fails
after its register operation but before its corresponding

 0 1 2 3 4
Q: — A B — — Snapshot of Q when a dequeue operation begins. Head = h = 1, Tail = 3

Q: E F — C D Snapshot of Q when the dequeuer executes line D10. h = 1, Head = 3, and Tail = 2

Figure 4: Possible snapshots experienced by a dequeuer immediately prior to and
following its preemption

402

deregister operation, its LLSCvar variable is never re-
claimed and results into a memory leak.

We now explain the modifications brought to the
enqueue and dequeue operations. These operations
read the content of an array slot into variable slot.
Then depending on slot, they either substitute the
array slot with a new value or release their reservation.
All substitutions are done by means of a CAS instruc-
tion with expected value being the address of the
caller's owned variable having its least significant bit
set. Restoring the original content of the slot undoes
any reservation for the slot. Finally, observe that any
eventual ABA problem is avoided by verifying that the
Head or Tail index remains unchanged from the
moment it is first read until the moment the slot is sub-

stituted by the thread-owned variable.

6. Experimental Results

We evaluated the performance of our FIFO queue
algorithms relative to other known algorithms by run-
ning a set of synthetic benchmarks written in C using
pthreads for multithreading. In all our experiments,
each thread performs 100000 iterations consisting of a
series of 5 enqueue operations followed by 5 dequeue
operations. A node allocation immediately precedes
each enqueue operation, and each dequeued node is
freed. We synchronized the threads so that none can
begin its iterations before all others finished their ini-
tialization phase. We report the average of 50 runs

 typedef struct LLSCvar {
 NODE *node;
 unsigned int r;
 struct LLSCvar *next;
 } LLSCvar;

 LLSCvar *First = null;

L1: void *LL(void *addr, LLSCvar *var) {
L2: NODE *slot;
L3: BOOL restart = true;
L4: while (restart) {
L5: slot = *addr;
L6: if (slot % 2 != 0) {
L7: FetchAndAdd(&(slot^1)->r,1);
L8: var->node = (slot^1)->node;
L9: }
L10: else
L11: var->node = slot;
L12: restart = CAS(addr,slot,var^1);
L13: if (slot % 2 != 0)
L14: FetchAndAdd(&(slot^1)->r,-1);
L15: }
L16: return var->node;
L17: } /* end of LL */

BOOL Enqueue(NODE *node, LLSCvar *var) {
 unsigned int t, tail;
 NODE *slot;
 while (true) {
 t = Tail;
 if (t == Head + Q_LENGTH)
 return FULL_QUEUE;
 tail = t % Q_LENGTH;
 slot = LL(&Q[tail],var);
 if (t == Tail) {
 if (slot != null) {
 CAS(&Q[tail],var^1,slot);
 CAS(&Tail,t,t+1);
 }
 else if (CAS(&Q[tail],var^1,node)) {
 CAS(&Tail,t,t+1);
 return OK;
 }
 }
 else
 CAS(&Q[tail],var^1,slot);
 }
} /* end of Enqueue */

R1: LLSCvar *Register(void) {
R2: LLSCvar *var = First;
R3: while (var != null) {
R4: if (var->r == 0 && CAS(&var->r,0,1))
R5: return var;
R6: else
R7: var = var->next;
R8: }
R9: var = malloc(sizeof(LLSCvar));
R10: var->r = 1;
R11: while (true) {
R12: var->next = First;
R13: if (CAS(&First,var->next,var))
R14: return var;
R15: }
R16: } /* end of Register */

RR1: LLSCvar *ReRegister(LLSCvar *var) {
RR2: if (var->r == 1) return var;
RR3: FetchAndAdd(&var->r,-1);
RR4: return Register();
RR5: } /* end of ReRegister */

DR1: void Deregister(LLSCvar *var) {
DR2: FetchAndAdd(&var->ref,-1);
DR3: } /* end of Deregister */

NODE *Dequeue(LLSCvar *var) {
 unsigned int h, head;
 NODE *slot;
 while (true) {
 h = Head;
 if (h == Tail)
 return null;
 head = h % Q_LENGTH;
 slot = LL(&Q[head],var);
 if (h == Head) {
 if (slot == null) {
 CAS(&Q[head],var^1,slot);
 CAS(&Head,h,h+1);
 }
 else if (CAS(&Q[head],var^1,null)) {
 CAS(&Head,h,h+1);
 return slot;
 }
 }
 else
 CAS(&Q[head],var^1,slot);
 }
} /* end of Dequeue */

Figure 5. Pointer-wide CAS implementation of a FIFO queue

403

where each run is the mean time needed to complete
the thread's iterations.

We conducted experiments for two different sys-
tems. The first is a PowerPC G4 1.5 GHz running on
Darwin 8.8.0, which only has pointer-wide LL/SC
instructions that can be accessed in C by implementing
them as functions written in assembler. 32-bit CAS
operations are provided by libkern. For this system, we
were able to compare our algorithms with 2 different
implementations of Michael and Scott's link-based
FIFO algorithm [9] that allow safe memory reclama-
tion. The first uses hazard pointers [10] (MS-Hazard
Pointers) and the second a CAS-based simulation of
LL/SC instructions [2] (MS-Doherty et al.). Both algo-
rithms require only pointer-wide instructions.

The second system is a Linux version 2.6.18 run-
ning on an AMD Sempron 3000+ 1.6 GHz, which has
32- and 64-bit CAS instructions with 32-bit wide
pointers. For this system, we were able to include
Shann et al.'s array-based FIFO [12] in our compari-
sons.

Figure 6 shows the actual and normalized running
times of the selected algorithms as a function of the

number of threads. The basis of normalization was
chosen to be our CAS-based implementation because
this algorithm is common to both experiments and al-
lows for easy comparisons.

Our LL/SC-based implementation is the fastest and
it is approximately 27% faster than our CAS-based
implementation. We also conducted an experiment
with a single thread accessing the FIFO array in ab-
sence of contention and without any synchronization in
order to evaluate the overhead imposed by our imple-
mentations. Our LL/SC and CAS-based implementa-
tions are respectively 12% and 50% slower on the
PowerPC, and the CAS-based implementation is 90%
slower on the AMD.

Compared to Shann et al.'s implementation, which
uses a 32- and a 64-bit CAS operation to enqueue or
dequeue a node, our CAS-based implementation re-
quires three 32-bit CAS and two FetchAndAdd opera-
tions, and it is roughly only 5% slower because a 64-
bit CAS roughly takes 4.5 more time than its 32-bit
counterpart on the AMD. As can be seen from all the
graphs, the MS hazard pointer FIFO queue implemen-
tation is a better algorithm when the number of threads

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 4 8 12 16 20 24 28 32

T
im

e
[s

ec
]

Number of Threads

MS-Doherty et al.
FIFO Array Simulated CAS

MS-Hazard Pointers Not Sorted
MS-Hazard Pointers Sorted

FIFO Array LL/SC

 0

 2

 4

 6

 8

 10

 12

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
im

e
[s

ec
]

Number of Threads

MS-Doherty et al.
MS-Hazard Pointers Not Sorted

MS-Hazard Pointers Sorted
FIFO Array Simulated CAS

Shann et al. (CAS64)

(a) PowerPC

(b) AMD

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 4 8 12 16 20 24 28 32

N
or

m
al

iz
ed

 T
im

e

Number of Threads

MS-Doherty et al.
FIFO Array Simulated CAS

MS-Hazard Pointers Not Sorted
MS-Hazard Pointers Sorted

FIFO Array LL/SC

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
or

m
al

iz
ed

 T
im

e

Number of Threads

MS-Doherty et al.
MS-Hazard Pointers Not Sorted

MS-Hazard Pointers Sorted
FIFO Array Simulated CAS

Shann et al. (CAS64)

(c) PowerPC (d) AMD
Figure 6. Actual and normalized running time as a function of the number of threads

on specific architectures

404

is moderate. In this algorithm, nodes that are currently
accessed by a thread have their addresses stored in a
per-thread global variable and a node can be reclaimed
only when its address doesn't appear in any of these
variables. In our experiments, a thread attempts to free
all the nodes it dequeued when the number of freed
nodes it holds is equal to 4 times the number of
threads. Even though this results in a huge waste of
memory, the cost to reclaim the nodes becomes fairly
low. As the number of threads increases, so does the
time to traverse all these variables, and hence the bene-
fit of sorting them when the number of threads is mod-
erate to high. Although the algorithm uses a single
successful CAS to dequeue and 2 successful CASs to
enqueue, making it the algorithm with the least number
of synchronization instructions, the overhead associ-
ated to free the nodes gets the upper hand when the
number of threads is high. It is interesting to observe
that the MS hazard pointer implementation is more
efficient on the PowerPC than on the AMD because of
the relatively cheaper cost of a CAS operation. The
slowest of the measured FIFO implementations is un-
questionably the Doherty et al. because it requires 7
successful CAS instructions per queueing operations.

7. Conclusions

We have presented 2 space-adaptive non-blocking
implementations of a concurrent FIFO queue based on
a bounded circular array. Our first implementation uses
load-linked/store conditional atomic instructions and
the second is based on the popular CAS atomic in-
struction. Compared to concurrent non-blocking link-
based FIFO queues, we showed that array-based im-
plementations are valuable alternatives when the num-
ber of threads accessing the queue is high or when
memory usage and management issues are the main
concern. Compared to other non-blocking FIFO queue
implementations, our new algorithms improve on pre-
vious ones by using only pointer-wide atomic instruc-
tions, as well as reducing space requirements and the
need for advance knowledge of the number of threads
that will access the queue.

We believe that our new algorithms are of highly
practical interest for multithreaded applications be-
cause they are based on atomic primitives that are
available in today's processors and microcontrollers.

8. References

[1] D.L. Detlefs, P.A. Martin, M. Moir, and G.L. Steele Jr.,
"Lock-free reference counting", Proc. of the 20th Ann. ACM
Symp. on Principles of Distributed Computing (PODC 2001),

pp. 190-199, Aug. 2001.
[2] S. Doherty, M. Herlihy, V. Luchangco, M. Moir, "Bring-
ing Practical Lock-Free Synchronization to 64-bit Appli-
cations", Proc. of the 23rd Ann. ACM Symp. on Principles of
Distributed Computing (PODC 2004), pp. 31-39, July 2004.
[3] M.P. Herlihy, and J.M. Wing, "Linearizability: A correct-
ness condition for concurrent objects", ACM TOPLAS, 12:3,
pp. 463-492, July 1990.
[4] M. Herlihy, V. Luchangco, and M. Moir, "The Repeat
Offender Problem: A Mechanism for Supporting Dynamic-
sized, Lock-free Data Structures", Proc. of the 16th Interna-
tional Symposium on Distributed Computing (DISC 2002),
pp. 339-353, Oct. 2002.
[5] M. Herlihy, V. Luchangco, and M. Moir, "Space- and
Time-adaptive Nonblocking Algorithms", CATS'03 Proc. of
Computing: The Australasian Theory Symposium, pp. 260-
280, April 2003.
[6] E. Ladan-Mozes, and N. Shavit, "An Optimistic Ap-
proach to Lock-Free FIFO Queues", Proc. of the 18th Inter-
national Conference on Distributed Computing (DISC 2004),
pp. 117-131, October 2004.
[7] V. Luchangco, M. Moir, and N. Shavit, "Nonblocking k-
Compare-And-Swap", Proc. of the 15th Ann. ACM Symp. on
Parallel Algorithms and Architectures (SPAA'03), pp. 314-
323, June 2003.
[8] M.M. Michael, and M.L. Scott, "Correction of a memory
management method for lock-free data structures", Computer
Science Department, University of Rochester, Technical
Report, 1995.
[9] M.M. Michael, and M.L. Scott, "Nonblocking Algorithms
and Preemption-Safe Locking on Multiprogrammed Shared
Memory Multiprocessors", J. Parallel Distrib. Comput., Vol.
51, No 1, pp. 1-26, May 1998.
[10] M.M. Michael, "Hazard Pointers: Safe Memory Recla-
mation for Lock-Free Objects", IEEE Trans. on Parallel and
Distributed Systems, Vol. 15, No. 6, pp. 491-504, June 2004.
[11] M. Moir, "Practical Implementations of Non-Blocking
Synchronization Primitives", Proc. of the 16th Ann. ACM
Symp. on Principles of Distributed Computing (PODC'97),
pp. 219-228, Aug. 1997.
[12] C.-H. Shann, T.-L. Huang, and C. Chen, "A Practical
Nonblocking Queue Algorithm Using Compare-And-Swap",
Proc. of the 7th International Conf. on Parallel and Distrib-
uted Systems (ICPADS 2000), pp. 470-475, July 2000.
[13] R. Treiber, "Systems Programming: Coping With Par-
allelism", Technical Report RJ5118, IBM Almaden Research
Center, April 1986.
[14] P. Tsigas, and Y. Zhang, "A Simple, Fast and Scalable
Non-Blocking Concurrent FIFO Queue for Shared Memory
Multiprocessor Systems", Proc. of the 13th Ann. ACM Symp.
on Parallel Algorithms and Architectures (SPAA'01), pp.
134-143, July 2001.
[15] J.D. Valois, "Lock-free linked lists using compare-and-
swap", Proc. of the 14th ACM Symposium on Principles of
Distributed Computing (PODC'95), pp. 214-222, Aug. 1995.
[16] J.M. Wing, and C. Gong, "Testing and Verifying Con-
current Objects", J. Parallel Distrib. Comput., Vol. 17, Nos.
1-2, pp. 164-182, 1993.

405

