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Abstract 
 

We present 2 efficient and practical non-blocking 
implementations of a concurrent array-based FIFO 
queue that are suitable for both multiprocessor as well 
as preemptive multithreaded systems. It is well known 
that concurrent FIFO queues relying on mutual exclu-
sion cause blocking, which have several drawbacks 
and degrade overall system performance. Link-based 
non-blocking queue algorithms have a memory man-
agement problem whereby a removed node from the 
queue can neither be freed nor reused because other 
threads may still be accessing the node. Existing solu-
tions to this problem introduce a fair amount of over-
head and, when the number of threads that can access 
the FIFO queue is moderate to high, are shown to be 
less efficient compared to array-based algorithms, 
which inherently do not suffer from this problem. In 
addition to being independent on advance knowledge 
of the number of threads that can access the queue, our 
new algorithms improve on previously proposed algo-
rithms in that they do not require any special instruc-
tion other than a load-linked/store-conditional or a 
compare-and-swap atomic instruction both operating 
on pointer-wide number of bits. Our new algorithms 
are thus portable to a broader range of architectures. 
 
Keywords: Concurrent queue, lock-free, compare-and-
swap (CAS), load-linked/store-conditional (LL/SC). 
 
1. Introduction 
 

Lock-free data structures have received a large 
amount of interest as a mechanism that ensures that the 
shared data is always accessible to all threads and a 
temporarily or permanently inactive thread cannot ren-
der the data structure inaccessible. A concurrent data 
structure implementation is non-blocking (or lock-free) 

if it guarantees that at least one thread is guaranteed to 
finish its operation on the shared objects in a finite 
number of steps, even if there are other halted or de-
layed threads currently accessing the shared data 
structure. By definition, non-blocking implementations 
have no critical sections in which preemption can oc-
cur. These data structures also do not require any 
communication with the kernel and have been repeat-
edly reported to perform better than their counterparts 
implemented with critical sections [10]. 

First-in-first-out (FIFO) queues are an important ab-
stract data structure lying at the heart of most operating 
systems and application software. They are needed for 
resource management, message buffering and event 
handling. As a result, the design of efficient imple-
mentations of FIFO queues has been widely re-
searched. A FIFO queue supports 2 operations: an en-
queue operation inserts a new item at the tail of the 
queue, and a dequeue operation removes an item from 
the head of the queue if the queue is not empty. 

This paper addresses the problem of designing 
practical non-blocking FIFO queues based on a 
bounded circular array using only widely available 
pointer-wide atomic instructions. We begin by re-
viewing previous work done on FIFO queues and the 
memory reclamation problem inherent in link-based 
algorithms. Of particular interest in that section are 
algorithms that can adapt to a varying number of 
threads; these algorithms are called population-oblivi-
ous [5]. Section 3 presents the problems that must to be 
dealt with when designing non-blocking circular array 
FIFO queues. Section 4 introduces our first algorithm, 
which is population-oblivious and has a space con-
sumption depending only on the number of items in the 
queue. Our second algorithm, presented in Section 5, 
applies to a broader range of architectures but unlike 
our first algorithm, the space consumption also de-
pends on the maximum number of threads that ac-

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.82

397



cessed the queue at any given time. This algorithm is 
based on the popular compare-and-swap (CAS) in-
struction, which takes 3 parameters: the address of a 
memory location, an expected value, and a new value. 
The new value is written into the memory location if 
and only if the location holds the expected value and 
the returned value is a Boolean indicating whether the 
write occurred. Performance evaluations of our algo-
rithms are conducted in Section 6. The paper concludes 
in Section 7. 
 
2. Related Work 
 

Practical algorithms of non-blocking FIFO queues 
fall into two categories. The first category consists of 
algorithms based on finite or infinite arrays. Herlihy 
and Wing [3] gave a non-blocking FIFO queue algo-
rithm requiring an infinite array. Wing and Gong [16] 
later removed the requirement of an infinite array. In 
their implementation, the running time of the dequeue 
operation is proportional to the number of completed 
enqueue operations since the creation of the queue. 
Treiber [13] also proposed a similar algorithm that 
does not use an infinite array. Although the enqueue 
operation requires only a single step, the running time 
needed for the dequeue operation is proportional to the 
number of items in the queue. These last two algo-
rithms are inefficient for large queue lengths and many 
dequeue attempts. Valois [15] also presented an algo-
rithm based on a bounded circular array. However, 
both enqueue and dequeue operations require that two 
array locations which may not be adjacent be simulta-
neously updated with a CAS primitive. Unfortunately 
this primitive is not available on modern processors. 
Shann et al. [12] present an efficient FIFO queue based 
on a circular array where each array element stores 2 
fields: a data field and a reference counter field that 
prevents the so-called ABA problem (see section 3). 
Their algorithm is useful for processors that offer 
atomic instructions that can manipulate an array ele-
ment as a whole. Because certain 32-bit architectures 
(e.g., PowerPC and Pentiums) support 32- and 64-bit 
atomic instructions, the data field may also represent a 
pointer to a record when there is a need to expand the 
data field size. Current and emerging 64-bit architec-
tures do not provide atomic access to more than 64-bit 
quantities, thus it is no longer possible to pack a large 
reference counter along with pointer-wide values in 64-
bit applications. When application software exploiting 
these 64-bit capabilities becomes widespread [2], their 
algorithm will be of limited use. Tsigas and Zhang [14] 
proposed the first practical non-blocking FIFO queue 
based on a circular array using single word synchroni-
zation primitives found on all modern architectures and 
suitable for 64-bit applications. Their algorithm applies 

only to queued items that are pointers to data and they 
show that it outperforms link-based FIFO queues. 
However, for queueing operations to appear as FIFO 
(linearizability property [3]), the algorithm assumes 
that an enqueue or a dequeue operation cannot be pre-
empted by more than s similar operations, where s is 
the array size. Their algorithm is therefore not popula-
tion-oblivious. 

The second category of FIFO queues is imple-
mented by a linked list of queued nodes. Michael and 
Scott [9] proposed an implementation based on a sin-
gle-linked list where an enqueue operation requires 2 
successful CAS operations and a dequeue operations 
needs a single successful CAS. More recently, Ladan-
Mozes and Shavit [6] presented an algorithm based on 
a doubly-linked list requiring one successful atomic 
synchronization instruction per queue operation. Al-
though there are more pointers to update, these are 
preformed by simple reads and writes. They show that 
their algorithm consistently performs better than the 
single-linked list suggested in [9]. 

Although the advantage of linked-based FIFO 
queues over array-based implementations is that the 
size of the queue and the number of nodes it holds may 
vary dynamically, these queues are subject to a mem-
ory management problem. A dequeued node can be 
freed and made available for reuse only when the de-
queuer is the only thread accessing the node. The easi-
est approach to deal with this problem is to ignore it 
and assume the presence of a garbage collector. How-
ever not all systems and languages provide garbage 
collector support. Another approach is to never free the 
node and to store it in a free pool for subsequent reuse 
once it is dequeued. When a new node is required, the 
node is obtained from the free pool. An important 
drawback of this approach is that the actual size of 
FIFO is equal to the maximum queue size since its 
initialization and is not really dynamically sized. 
Valois [15] presented an approach that actually frees a 
dequeued node. The mechanism associates a reference 
counter field with each node. Each time a thread ac-
cesses a node, it increments the node's reference 
counter; when the thread no longer accesses the node, 
it decrements the counter. A node can be freed only if 
the value of its reference counter drops to zero. Al-
though the scheme is simple, a basic problem arises 
making this scheme impractical. The scheme proposed 
in [8,15] involves 3 steps: (1) a pointer is set to the 
node that is to be accessed, (2) the reference counter of 
the possibly reclaimed node is then incremented, and 
(3) the pointer is verified that it still points to the cor-
rect node. Should the verification step (3) fail, the ref-
erence counter is decremented and all three steps re-
peated. Note that the reference counter of a node can 
be accessed and modified even after it has been freed. 
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None of the reclaimed node can thus be definitely re-
leased to the memory allocator and reused for arbitrary 
purposes without possibly corrupting memory loca-
tions; all must again be stored in some free pool. 
Detlefs et al. [1] alleviate the above problem by per-
forming steps (1) and (2) atomically. But because the 
reference to a node and its associated reference counter 
are not contiguous in memory, the needed primitive 
requires the atomic update of two arbitrary memory 
locations that is not supported in hardware by any 
modern processor. 

Michael [10] presented a lock-free memory man-
agement technique that allows safe memory reclama-
tion. Whenever a thread is about to reference a node, it 
publishes the address of the node in a global memory 
location. When the dequeuer removes a node from the 
queue, it scans the published accesses of the other 
threads. If a match is not found, the node may be safely 
freed. Otherwise the node is stored until a subsequent 
scan. A similar scheme, but not using pointer-wide 
instructions, was also independently proposed by Her-
lihy et al. [4]. 

Doherty et al. [2] present the first link-based FIFO 
queue that is population-oblivious and has a space con-
sumption depending only on the number of queued 
items and the number of threads currently accessing 
the queue. However, their algorithm introduces signifi-
cant overheads and trades memory space for computa-
tional time. 
 
3. ABA Problem 
 

The ABA problem is a well-known problem in the 
context of data structures implemented by CAS state-
ments. The desired effect of a CAS operation is that it 
should succeed only if the value of a location does not 
change since the previous reading of the contents of the 
location. A thread may read value A from a shared 
location and then attempt to modify the contents of the 
location from A to some other value. However it is 
possible that between the read and the CAS other 
threads change the contents of the location from A to B 
and then back to A again. The CAS therefore succeeds 
when it should fail. The semantics of read and CAS 
prevent them from detecting that a shared variable has 
not been written after the initial read. 

In a circular list based on a finite array, there are 3 
different ABA problem sources. First, the Head and 
Tail indices are each prone to the ABA problem, 
which we call the index-ABA problem. Next, each slot 
in the array holds 2 different value types: a queued data 
item and a null item that indicates that the slot is empty 
and available for reuse. Each of these 2 data values 
gives rise to an ABA problem that may be solved dif-
ferently. In order to distinguish them, we refer to them 

as the data-ABA and the null-ABA problem respec-
tively. In the following we illustrate an instance of how 
each identified ABA problem manifests itself and the 
means to elude the problem. 

The enqueue and dequeue operations increment 
their respective indices once they have inserted or re-
moved an item in or from the array. If these operations 
are delayed immediately prior to the increment but 
after modifying the contents of the array, other threads 
may successfully complete s–1 identical operations and 
leave the index concerned by the delayed operation in 
the same state, where s is the size of the circular array. 
When the delayed operation resumes, it wrongly ad-
justs its index. Figure 1 illustrates such a scenario. 

The index-ABA problem can easily be dealt with if 
we let each counter occupy a word and only increment 
these counters. The enqueue and dequeue functions can 
then map the counter into a valid index before access-
ing an array slot with a modulo operator. Although this 
solution does not guarantee that the ABA problem will 
not occur, its likelihood is extremely remote. 

A simple example of the data-ABA problem can be 
given for an array having 2 slots. Assume that the array 
initially contains a single item A. Since a dequeue op-
eration must first read the contents of the slot before 
removing it, a dequeuer may read item A and then be 
preempted before it gets a chance to remove A from the 
array. During its preemption, another thread may de-
queue item A and then successively enqueue items B 
and A. The array is now full and when the preempted 
dequeue operation resumes, it wrongly removes item A 
instead of B. The implementation proposed in [14] 
circumvents this difficulty by assuming that the dura-
tion of preemption cannot be greater than the time for 
the indices to rewind themselves. This assumption may 
result into an exceedingly oversized array or be impos-
sible to meet when the upper bound on the number of 
threads is unknown. 

If we assume for the ease of explanation that the ar-
ray is infinite, the array can be divided into 3 consecu-
tive intervals: a possibly empty succession of empty 
slots that held removed items, a possibly empty series 
of enqueued items, and finally a series of empty slots 
that never held any item. A null-ABA problem occurs 
when an enqueuer mistakenly inserts an item into a 
free slot that belongs to the first interval. An enqueuer 
reads the contents of the first slot in the 3rd interval, 
notices that it is empty but gets preempted before in-
serting its item in the slot. Another thread may then 
insert an item and dequeue all the items in the array. 
When the enqueuer resumes, it incorrectly inserts its 
item in the first interval of the array. This flaw is cor-
rected in [14] by cleverly having 2 empty indicators. 
Initially the array slots are set to null0 (3rd interval) 
and once items are removed from the array the slots are 
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marked with null1 to become part of the 1st interval. 
When the head index rewinds to 0, the interpretations 
of the null values are switched from their correspond-
ing intervals. The most common solution to this and 
other ABA problems is to split each shared memory 
location into 2 parts that are accessed simultaneously: a 
part for a version number or counter and a part for the 
shared data item; when a thread updates the memory 
location it also increments the counter in the same 
atomic operation. Because the version number is not 
unbounded, this technique does not guarantee the ABA 
scenario will not occur but it makes it extremely un-
likely. Shann et al. [12] rely on this technique to solve 
the data-ABA and null-ABA problem for their FIFO 
queue implemented by a circular array. Algorithm 
designers using this technique usually assume that the 
version number and the data item each occupy a single 
word and that the architecture supports double-word 
atomic operations. In practice, this assumption may be 
valid for some 32-bit architectures, but it is invalid for 
the emerging 64-bit architectures. 
 
4. First Algorithm 
 

Modern instruction-set architectures, such as 
ARMv6 and above, DEC Alpha, MIPS II and 
PowerPC processors, do not provide atomic primitives 
that read and update a memory location in a single step 
because it is much more complex than a typical RISC 
operation and it is difficult to pipeline. Instead these 
processors provide an alternative mechanism based on 
two atomic instructions, load-linked (LL, also called 
load-lock or load reserve) and store-conditional (SC). 
The usual semantics of LL and SC assumed by most 
algorithm designers are given in Figure 2. A shared 
variable X accessed by these instructions can be re-
garded as a variable that has an associated shared set of 
thread identifiers validX, which is initially empty. In-
struction LL returns the value stored in the shared lo-
cation X and includes the calling thread identifier in set 
validX. Instruction SC checks if the calling thread's 
identifier is in validX, and if so, clears validX and up-
dates the location before returning success; otherwise 
the instruction returns failure. 

 
 

 
 
 
 
 
 
 

 
 
 

LL(X) ≡ validX ∪ {threadID}; return X 
SC(X,Y) ≡ if threadID ∈ validX then validX ← ∅; 

     X ← Y; return true 
else return false 
end if 

Figure 2. Equivalent atomic statements speci-
fying the theoretical semantics of LL/SC 

 

Based on the semantics of the LL and SC instruc-
tions, we can design a FIFO queue that is immune to 
ABA problems. Figure 3 shows our algorithm in a self- 
explanatory pidgin C notation. For clarity, various type 
casts are missing but pointer dereferencing obey strict 
C notation. Following standard usage, all global vari-
ables have identifiers beginning with an uppercase 
letter and variables completely in lowercase are local 
to an operation. 

Our FIFO queue is implemented as a circular list by 
an array of Q_LENGTH slots named Q, along with two 
indices named Head and Tail. An array slot contains 
either a pointer to a data item or the value null to indi-
cate that it is currently free. Head refers to the first slot 
of the queue that may hold an item. Tail designates 
the next free slot where a new item can be inserted. 
The queue is empty when Head is equal to Tail, and 
it is full when Head + Q_LENGTH is equal to Tail. 
We assume that Q_LENGTH is a power of 2 so that 
Head and Tail can wraparound without skipping 
array slots. Finally, the array slots are initialized to null 
and the indices are set to 0 prior to calling an enqueue 
or a dequeue operation. 

To add a data item, the enqueue operation first reads 
the current Tail value (line E5) and reserves the slot 
it intends to insert the item into (line E9). The test on 
line E10 verifies that the reserved slot still corresponds 
to the one designated by Tail, and its purpose is to 
avoid the null-ABA problem. After successfully re-
serving an array slot, the enqueuer checks the contents 
of the slot. If it is empty, the enqueuer tries to insert its 
item into it (line E15). On the other hand, if the re-
served slot is not empty, another concurrent thread has 
successfully inserted an item but was preempted before 
it had the chance to update Tail and the Tail value 
read on line E5 is lagging behind. In this case, the en- 

 0 1 2 3   
Q: — — — — Tail = 0 Initially array Q is empty. 
Q: A — — — Tail = 0 Thread T1 inserts item A into Q[0] and then gets preempted. 
Q: A — — — Tail = 1 Thread T2 adjusts Tail in order to perform its insertion. 
Q: A B C D Tail = 0 T2 inserts items B, C, and D, while adjusting Tail. 
Q: — — — D Tail = 0 Thread T3 dequeues items A, B, and C. 
Q: — — — D Tail = 1 T1 resumes and increments Tail. The next insertion will 

      wrongly take place in Q[1]. 
 

Figure 1. Scenario with 3 threads illustrating the index-ABA problem 
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queuer helps the delayed thread and advances the 
Tail index (line E13) on its behalf before restarting 
its loop. 

The dequeue operation removes the oldest item in 
the queue and returns it to its caller. The first 10 lines 
of the dequeue operation are identical to those of the 
enqueue operation: A dequeuer reads and reserves the 
array slot identified by the current Head index value. 
The test on line D10 confirms that the marked slot is 
indeed the oldest item that can be removed. Without 
this check, a dequeuer can read the current Head in-
dex, say h, and be preempted anywhere between lines 
D5 and D10. During this preemption, other threads can 
enqueue and dequeue items wrapping the array as they 
do so. When the preempted dequeuer resumes its exe-
cution and carries out the LL operation on line D9, 
Q[h] may hold an item that is not the oldest. Figure 4 
illustrates such a scenario for a queue with 5 slots. 

After the test on line D10, the slot may be in one of 
two states. If it is empty, the dequeuer can infer that the 
Head index is falling behind since the dequeuer 
checked that the queue was not empty (line D6) before 
attempting to remove an item. In this case, the de-
queuer tries to update Head before restarting from the 
beginning. On the other hand, if the slot is not empty, 
the dequeuer attempts to substitute the slot for a null 
and then, if it succeeds, tries to update Head before 
returning the dequeued item. 

 
5. Second Algorithm 
 

Unfortunately, all architectures that support LL/SC 
instructions do not support the full theoretical seman-
tics that we have described in Figure 2. These archi-
tectures have one or several of the following limita- 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tions [11]: 
1. There can be neither nesting nor interleaving of 

LL/SC pairs. 
2. There can be no memory access between a LL/SC 

pair. 
3. The cache coherence mechanism may allow the 

SC instruction to fail spuriously if a cached word 
is selected for replacement by the cache protocol 
or when the executing thread is preempted. 

4. The set of thread identifiers (see Figure 2) is re-
placed by a single bit per processor. 

5. The reservation bit typically may also be associ-
ated to a set of memory locations and a normal 
write to an address close to the one that was read 
by a LL can clear the bit. Algorithms performing 
such a write between LL/SC pairs can give rise to 
various starvation and livelock problems. 

More importantly, some architectures do not support 
the LL/SC instructions at all, but have a CAS instruc-
tion instead. We extend the applicability of our LL/SC 
based algorithm to these architectures. The basic idea 
behind our CAS-based implementation is to replace an 
accessed shared location with a specific thread-owned 
tag. An update of the shared location is then allowed 
only if its content matches the executing thread's tag. 
In the following we elaborate on this scheme and pre-
sent our modified FIFO queue algorithm shown in 
Figure 5. 

Assume for the moment that each thread holds a 
specific variable that can be accessed by all other par-
ticipating threads. This variable is passed as parameter 
to our simulated LL instruction, which reads and re-
turns the content of a shared variable. The shared loca-
tion is read on line L5. If it holds an application related 
data, the shared location is atomically replaced by the 

     Q: array[0..Q_LENGTH-1] of *NODE;   // Circular list initialized with null 
     unsigned int Head, Tail;            // Extraction and insertion indices 
  

E1:  BOOL Enqueue(NODE *node) {                   D1:  NODE *Dequeue(void) { 
E2:    unsigned int t, tail;                      D2:    unsigned int h, head; 
E3:    NODE *slot;                                D3:    NODE *slot; 
E4:    while (true) {                             D4:    while (true) { 
E5:       t = Tail;                               D5:       h = Head; 
E6:       if (t == Head + Q_LENGTH)               D6:       if (h == Tail) 
E7:          return FULL_QUEUE;                   D7:          return null; 
E8:       tail = t % Q_LENGTH;                    D8:       head = h % Q_LENGTH; 
E9:       slot = LL(&Q[tail]);                    D9:       slot = LL(&Q[head]); 
E10:      if (t == Tail)                          D10:      if (h == Head) 
E11:         if (slot != null) {                  D11:         if (slot == null) { 
E12:            if (LL(&Tail) == t)               D12:            if (LL(&Head) == h) 
E13:               SC(&Tail,t+1);                 D13:               SC(&Head,h+1); 
E14:         }                                    D14:         } 
E15:         else if (SC(&Q[tail],node)) {        D15:         else if (SC(&Q[head],null)) { 
E16:            if (LL(&Tail) == t)               D16:            if (LL(&Head) == h) 
E17:               SC(&Tail,t+1);                 D17:               SC(&Head,h+1); 
E18:            return OK;                        D18:            return slot; 
E19:         }                                    D19:         } 
E20:   }                                          D20:   } 
E21: } /* end of Enqueue */                       D21: } /* end of Dequeue */ 
 

Figure 3. ABA problem-free implementation of a FIFO queue 
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address of the specific thread-owned variable, which 
acts as a reservation marker. On the other hand, if the 
shared location contains the address of another thread's 
owned variable, the shared location is already reserved; 
the application data is read by means of this variable 
(line L8) before atomically substituting the location 
with the address of the caller's owned variable. To 
distinguish between application data and thread-owned 
variables, we use the fact that modern 32- and 64-bit 
architectures allocate memory blocks at addresses that 
are evenly dividable by 2; therefore, the least signifi-
cant bit of a valid address is always 0. As our FIFO 
array contains addresses to application nodes, the least 
significant bit of an address is in excess and can be 
used as an indicator. The atomic primitives operating 
on these addresses need only be pointer-wide primi-
tives, and thus meet the requirement for the emerging 
64-bit architectures. In the LL function of Figure 5, 
odd valued addresses indicate thread-owned variables. 
The hat symbol (^) in Figure 5 refers to C's bitwise xor 
operator. 

A similar scheme was proposed in [7], however, 
theirs uses a thread identifier augmented by a version 
tag rather than the address of an owned variable to 
mark a reservation. The thread identifier is used as an 
index into an array that serves as a placeholder for the 
substituted value. The purpose of their version tag is to 
avoid ABA problems associated with the replacement. 
The resulting scheme uses only pointer-wide atomic 
primitives but it is not population-oblivious because of 
the fixed-sized array. Their scheme may however be 
transformed into a population-oblivious one like the 
one we expose below. 

We next explain how threads acquire their owned 
variable. The register and deregister operations that are 
part of our algorithm are a simplification of those pro-
posed in [5], and which were designed to solve the 
collect problem. Each thread that calls an enqueue or 
dequeue operation requires a global variable that other 
threads may consult in the simulated LL operation. 
This global variable is acquired by a registration op-
eration. Once a thread no longer enqueues nor de-
queues data, its variable is no longer required but can-
not be freed because other threads may still access it 
(lines L5, L7, L8 and L14). Consequently, allocated 
variables are kept permanently in a list but other 
threads may recycle them. If a thread needs to perform  

 
 
 
 
 
 
 
 
more than a single operation on the array, its owned 
variable may be reused only if other threads are not 
currently accessing it. Assume that this is not the case, 
a thread, say A, may substitute an array slot by its 
owned variable and be preempted by another thread, B. 
B can read the owned variable of A (line L5) and be 
preempted by A before the CAS operation on line L12. 
A may then finish its operation on the array and latter, 
after many enqueues and dequeues by threads other 
than B, reinsert its owned variable into the same array 
slot currently referenced by B. If B now resumes, it 
will wrongly succeed the CAS operation on line L12 
and insert its owned variable with erroneous informa-
tion regarding the actual content of the array slot. To 
circumvent this ABA problem, we simply use a refer-
ence counter that is incremented on line L7 and decre-
mented when an owned variable ceases to be accessed 
(line L14). These operations are done by an atomic 
FetchAndAdd instruction. 

The data type used for the simulated LL/SC opera-
tions is called LLSCvar and contains a placeholder for 
a FIFO slot, a reference counter indicating how many 
threads are currently accessing it, and a link to the next 
LLSCvar variable in the list. To acquire a LLSCvar 
variable, a thread first traverses the First list and 
tries to reclaim an unowned variable by setting its ref-
erence counter to 1 (line R4). If the CAS succeeds, an 
available LLSCvar variable is found and returned (line 
R5). If the thread reaches the end of the list, it assumes 
there is no LLSCvar variable that can be recycled. The 
thread then allocates a new LLSCvar variable and adds 
it to the list following a simple LIFO policy—a FIFO 
policy would require an extra variable. A simple retry-
loop with a CAS operation is used to add the new 
owned variable to the list. The register operation takes 
time and space that is a function of the maximum 
number of threads that accessed the queue at any given 
time. A thread must call ReRegister to check that 
no other thread is accessing its owned variable between 
any two consecutive operations on the array. This op-
eration either returns the same LLSCvar variable or 
another one after deregistering the currently held 
LLSCvar variable. The deregister operation removes 
the owner's reference to the LLSCvar variable (line 
DR2) so that it may be reclaimed by future register 
operations, and takes constant time. If a thread fails 
after its register operation but before its corresponding 

 0 1 2 3 4  
Q: — A B — —   Snapshot of Q when a dequeue operation begins. Head = h = 1, Tail = 3 

Q: E F — C D   Snapshot of Q when the dequeuer executes line D10. h = 1, Head = 3, and Tail = 2 
 

Figure 4: Possible snapshots experienced by a dequeuer immediately prior to and 
following its preemption 
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deregister operation, its LLSCvar variable is never re-
claimed and results into a memory leak. 

We now explain the modifications brought to the 
enqueue and dequeue operations. These operations 
read the content of an array slot into variable slot. 
Then depending on slot, they either substitute the 
array slot with a new value or release their reservation. 
All substitutions are done by means of a CAS instruc-
tion with expected value being the address of the 
caller's owned variable having its least significant bit 
set. Restoring the original content of the slot undoes 
any reservation for the slot. Finally, observe that any 
eventual ABA problem is avoided by verifying that the 
Head or Tail index remains unchanged from the 
moment it is first read until the moment the slot is sub- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stituted by the thread-owned variable. 
 
6. Experimental Results 
 

We evaluated the performance of our FIFO queue 
algorithms relative to other known algorithms by run-
ning a set of synthetic benchmarks written in C using 
pthreads for multithreading. In all our experiments, 
each thread performs 100000 iterations consisting of a 
series of 5 enqueue operations followed by 5 dequeue 
operations. A node allocation immediately precedes 
each enqueue operation, and each dequeued node is 
freed. We synchronized the threads so that none can 
begin its iterations before all others finished their ini-
tialization phase. We report the average of 50 runs 

     typedef struct LLSCvar { 
        NODE *node; 
        unsigned int r; 
        struct LLSCvar *next; 
     } LLSCvar; 
 
     LLSCvar *First = null; 
 
L1:  void *LL(void *addr, LLSCvar *var) { 
L2:    NODE *slot; 
L3:    BOOL restart = true; 
L4:    while (restart) { 
L5:       slot = *addr; 
L6:       if (slot % 2 != 0) { 
L7:          FetchAndAdd(&(slot^1)->r,1); 
L8:          var->node = (slot^1)->node; 
L9:       } 
L10:      else 
L11:         var->node = slot; 
L12:      restart = CAS(addr,slot,var^1); 
L13:      if (slot % 2 != 0) 
L14:         FetchAndAdd(&(slot^1)->r,-1); 
L15:   } 
L16:   return var->node; 
L17: } /* end of LL */ 
 

BOOL Enqueue(NODE *node, LLSCvar *var) { 
  unsigned int t, tail; 
  NODE *slot; 
  while (true) { 
     t = Tail; 
     if (t == Head + Q_LENGTH) 
        return FULL_QUEUE; 
     tail = t % Q_LENGTH; 
     slot = LL(&Q[tail],var); 
     if (t == Tail) { 
        if (slot != null) { 
           CAS(&Q[tail],var^1,slot); 
           CAS(&Tail,t,t+1); 
        } 
        else if (CAS(&Q[tail],var^1,node)) { 
           CAS(&Tail,t,t+1); 
           return OK; 
        } 
     } 
     else 
        CAS(&Q[tail],var^1,slot); 
  } 
} /* end of Enqueue */ 

R1:  LLSCvar *Register(void) { 
R2:    LLSCvar *var = First; 
R3:    while (var != null) { 
R4:      if (var->r == 0 && CAS(&var->r,0,1)) 
R5:         return var; 
R6:      else 
R7:         var = var->next; 
R8:    } 
R9:    var = malloc(sizeof(LLSCvar)); 
R10:   var->r = 1; 
R11:   while (true) { 
R12:      var->next = First; 
R13:      if (CAS(&First,var->next,var)) 
R14:         return var; 
R15:   } 
R16: } /* end of Register */ 
 

RR1: LLSCvar *ReRegister(LLSCvar *var) { 
RR2:   if (var->r == 1) return var; 
RR3:   FetchAndAdd(&var->r,-1); 
RR4:   return Register(); 
RR5: } /* end of ReRegister */ 
 

DR1: void Deregister(LLSCvar *var) { 
DR2:   FetchAndAdd(&var->ref,-1); 
DR3: } /* end of Deregister */ 
 

NODE *Dequeue(LLSCvar *var) { 
  unsigned int h, head; 
  NODE *slot; 
  while (true) { 
     h = Head; 
     if (h == Tail) 
        return null; 
     head = h % Q_LENGTH; 
     slot = LL(&Q[head],var); 
     if (h == Head) { 
        if (slot == null) { 
           CAS(&Q[head],var^1,slot); 
           CAS(&Head,h,h+1); 
        } 
        else if (CAS(&Q[head],var^1,null)) { 
           CAS(&Head,h,h+1); 
           return slot; 
        } 
     } 
     else 
        CAS(&Q[head],var^1,slot); 
  } 
} /* end of Dequeue */ 

 
 

Figure 5. Pointer-wide CAS implementation of a FIFO queue 
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where each run is the mean time needed to complete 
the thread's iterations. 

We conducted experiments for two different sys-
tems. The first is a PowerPC G4 1.5 GHz running on 
Darwin 8.8.0, which only has pointer-wide LL/SC 
instructions that can be accessed in C by implementing 
them as functions written in assembler. 32-bit CAS 
operations are provided by libkern. For this system, we 
were able to compare our algorithms with 2 different 
implementations of Michael and Scott's link-based 
FIFO algorithm [9] that allow safe memory reclama-
tion. The first uses hazard pointers [10] (MS-Hazard 
Pointers) and the second a CAS-based simulation of 
LL/SC instructions [2] (MS-Doherty et al.). Both algo-
rithms require only pointer-wide instructions. 

The second system is a Linux version 2.6.18 run-
ning on an AMD Sempron 3000+ 1.6 GHz, which has 
32- and 64-bit CAS instructions with 32-bit wide 
pointers. For this system, we were able to include 
Shann et al.'s array-based FIFO [12] in our compari-
sons. 

Figure 6 shows the actual and normalized running 
times of the selected algorithms as a function of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
number of threads. The basis of normalization was 
chosen to be our CAS-based implementation because 
this algorithm is common to both experiments and al-
lows for easy comparisons. 

Our LL/SC-based implementation is the fastest and 
it is approximately 27% faster than our CAS-based 
implementation. We also conducted an experiment 
with a single thread accessing the FIFO array in ab-
sence of contention and without any synchronization in 
order to evaluate the overhead imposed by our imple-
mentations. Our LL/SC and CAS-based implementa-
tions are respectively 12% and 50% slower on the 
PowerPC, and the CAS-based implementation is 90% 
slower on the AMD. 

Compared to Shann et al.'s implementation, which 
uses a 32- and a 64-bit CAS operation to enqueue or 
dequeue a node, our CAS-based implementation re-
quires three 32-bit CAS and two FetchAndAdd opera-
tions, and it is roughly only 5% slower because a 64-
bit CAS roughly takes 4.5 more time than its 32-bit 
counterpart on the AMD. As can be seen from all the 
graphs, the MS hazard pointer FIFO queue implemen-
tation is a better algorithm when the number of threads 
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is moderate. In this algorithm, nodes that are currently 
accessed by a thread have their addresses stored in a 
per-thread global variable and a node can be reclaimed 
only when its address doesn't appear in any of these 
variables. In our experiments, a thread attempts to free 
all the nodes it dequeued when the number of freed 
nodes it holds is equal to 4 times the number of 
threads. Even though this results in a huge waste of 
memory, the cost to reclaim the nodes becomes fairly 
low. As the number of threads increases, so does the 
time to traverse all these variables, and hence the bene-
fit of sorting them when the number of threads is mod-
erate to high. Although the algorithm uses a single 
successful CAS to dequeue and 2 successful CASs to 
enqueue, making it the algorithm with the least number 
of synchronization instructions, the overhead associ-
ated to free the nodes gets the upper hand when the 
number of threads is high. It is interesting to observe 
that the MS hazard pointer implementation is more 
efficient on the PowerPC than on the AMD because of 
the relatively cheaper cost of a CAS operation. The 
slowest of the measured FIFO implementations is un-
questionably the Doherty et al. because it requires 7 
successful CAS instructions per queueing operations. 
 
7. Conclusions 
 

We have presented 2 space-adaptive non-blocking 
implementations of a concurrent FIFO queue based on 
a bounded circular array. Our first implementation uses 
load-linked/store conditional atomic instructions and 
the second is based on the popular CAS atomic in-
struction. Compared to concurrent non-blocking link-
based FIFO queues, we showed that array-based im-
plementations are valuable alternatives when the num-
ber of threads accessing the queue is high or when 
memory usage and management issues are the main 
concern. Compared to other non-blocking FIFO queue 
implementations, our new algorithms improve on pre-
vious ones by using only pointer-wide atomic instruc-
tions, as well as reducing space requirements and the 
need for advance knowledge of the number of threads 
that will access the queue. 

We believe that our new algorithms are of highly 
practical interest for multithreaded applications be-
cause they are based on atomic primitives that are 
available in today's processors and microcontrollers. 
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