
Concurrent Programming Without Locks

KEIR FRASER and TIM HARRIS

University of Cambridge Computer Laboratory

Mutual exclusion locks remain the de facto mechanism for concurrency control on shared-memory
data structures. However, their apparent simplicity is deceptive: it is hard to design scalable
locking strategies because they can harbour problems such as deadlock, priority inversion and
convoying. Furthermore, scalable lock-based systems are not readily composable when building
compound operations that span multiple structures. In looking for solutions to these problems,
interest has developed in non-blocking systems which have promised scalability and robustness by
eschewing mutual exclusion while still ensuring safety. However, existing abstractions for building
non-blocking systems are rarely suitable for practical use, imposing substantial storage overheads,
serialising non-conflicting operations or requiring instructions not readily available on today’s
CPUs.

In this paper we present three abstractions which make it easier to develop non-blocking imple-
mentations of arbitrary data structures. The first abstraction is a multi-word compare-and-swap
(MCAS) operation which atomically updates a set of memory locations. This can be used to
advance a data structure from one consistent state to a another. The second abstraction is a
word-based software transactional memory (WSTM) which can allow sequential code to be re-
used more directly than with MCAS and which provides better scalability when locations are
being read rather than being updated. The third abstraction is an object-based software transac-
tional memory (OSTM). This abstraction allows more predictable performance than WSTM and
a more streamlined implementation at the cost of re-engineering the data structure to use OSTM
objects.

We present practical implementations of all three of these abstractions, built from operations
available across all the major CPU families used in contemporary parallel hardware. We illustrate
the use of these abstractions by outlining how highly concurrent skip-lists and red-black trees
can be built over them and we compare the performance of the resulting implementations against
one another and against high-performance lock-based systems. These results demonstrate that
it is possible to build useful non-blocking data structures with performance comparable to or
better than sophisticated lock-based designs. Furthermore, and contrary to widespread belief,
this work shows that existing hardware primitives are sufficient to build these practical lock-free
implementations of complex data structures.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Con-
currency; Mutual Exclusion; Synchronization

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Concurrency, lock-free systems, transactional memory

ACM Journal Name, Vol. V, No. N, M 20YY, Pages 1–48.

2 · K. Fraser and T. Harris

1. INTRODUCTION

Mutual-exclusion locks are one of the most widely used and fundamental abstrac-
tions for synchronisation. This popularity is largely due to their apparently simple
programming model and the availability of implementations which are efficient and
scalable. Unfortunately, without specialist programming care, these virtues rarely
hold for systems containing more than a handful of locks:

— For correctness, programmers must ensure that threads hold the necessary
locks to avoid conflicting operations being executed concurrently. To avoid mis-
takes, this favours the development of simple locking strategies which pessimisti-
cally serialise non-conflicting operations.

— For liveness, programmers must be careful to avoid introducing deadlock and
as a result they may cause software to hold locks for longer than would otherwise be
necessary. Without scheduler support, programmers must also be aware of priority
inversion.

— For high performance, programmers must balance the granularity at which
locking operates against the time that the application will spend acquiring and
releasing locks.

This paper is concerned with the design and implementation of software which is
safe for use on multi-threaded multi-processor shared-memory machines but which
does not involve the use of locking. Instead, we present three different abstractions
for making atomic updates across a set of words. These enable the direct devel-
opment of concurrent data structures from sequential implementations which, we
believe, makes it easier to build multi-threaded systems which are correct. Further-
more, our implementations are non-blocking, giving strong guarantees of liveness
which preclude deadlock, and they generally allow disjoint-access parallelism, mean-
ing that updates made to non-overlapping sets of locations will be able to execute
concurrently, allowing scalable performance.

To introduce these techniques we shall sketch their use when inserting items into
a singly-linked list holding integers in ascending order. In each case the list is
structured with sentinel head and tail nodes whose keys are respectively less than
and greater than all other values. Each node’s key remains constant after insertion.
In each of our examples, the insert operation proceeds by identifying nodes prev and
curr between which the new node is to be placed. For comparison Figure 1 shows
the corresponding insert operation when implemented for single-threaded use.

Our three alternative abstractions all follow a common style in which the core
sequential code is wrapped in a loop which retries the insertion until it succeeds
in committing the updates to memory. The first abstraction provides multi-word
compare-and-swap (MCAS) which generalises the single-word CAS operation found
on many processors: it atomically updates one or more memory locations from a
set of expected values to a set of new values [Harris et al. 2002]. Figure 2 shows
how the insertion could be expressed using MCAS. The changes from sequential
code are that operations reading from any words updated by MCAS must use an
MCASRead function and that proposed updates are grouped together and supplied
to an invocation of MCAS: here there is only a single update to be made, as in
linked-list implementations built directly from CAS [Harris 2001; Michael 2002a].
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 3

1 typedef struct { int key; struct node *next; } node;
typedef struct { node *head; } list;

3 void list insert locked (list *l, int k) {
node *n := new node(k);

5 node *prev := l→head;
node *curr := prev→next;

7 while (curr→key < k) {
prev := curr;

9 curr := curr→next;
}

11 n→next := curr;
prev→next := n;

13 }

Fig. 1. Insertion into a sorted list.

1 typedef struct { int key; struct node *next; } node;
typedef struct { node *head; } list;

3 void list insert mcas (list *l, int k) {
node *n := new node(k);

5 do {
node *prev := MCASRead(&(l→head));

7 node *curr := MCASRead(&(prev→next));

while (curr→key < k) {
9 prev := curr;

curr := MCASRead(&(curr→next));
11 }

n→next := curr;
13 } while (¬MCAS (1, [&prev→next], [curr], [n]));

}

Fig. 2. Insertion into a sorted list managed using MCAS. In this case the arrays specifying the
update need contain only a single element.

However, a delete operation would pass two updates to MCAS: one to excise the
node from the list and a second to clear its next field to NULL to prevent concurrent
insertion after a deleted node.

The second abstraction provides a word-based software transactional memory
(WSTM) which allows a series of read and write operations performed by a thread
to be grouped as a software transaction and applied to the heap atomically [Harris
and Fraser 2003]. Here, in Figure 3, the changes from sequential code are that read
and write operations are performed through WSTMRead and WSTMWrite functions
and that this whole set of updates is wrapped in a pair of WSTMStartTransaction
and WSTMCommitTransaction calls. In related work we have shown how a managed
run-time environment can automate the introduction of these operations in order
to expose a higher-level construct such as atomic blocks within which all accesses
are performed transactionally [Harris and Fraser 2003].

The third abstraction provides an object-based software transactional memory
(OSTM) which allows a thread to ‘open’ a set of objects for transactional accesses
and, once more, to commit updates to them atomically [Fraser 2003]. Figure 4

ACM Journal Name, Vol. V, No. N, M 20YY.

4 · K. Fraser and T. Harris

1 typedef struct { int key; struct node *next; } node;
typedef struct { node *head; } list;

3 void list insert wstm (list *l, int k) {
node *n := new node(k);

5 do {
wstm transaction *tx := WSTMStartTransaction();

7 node *prev := WSTMRead(tx, &(l→head));
node *curr := WSTMRead(tx, &(prev→next));

9 while (curr→key < k) {
prev := curr;

11 curr := WSTMRead(tx, &(curr→next));
}

13 n→next := curr;
WSTMWrite(t, &(prev→next), n);

15 } while (¬WSTMCommitTransaction(tx));
}

Fig. 3. Insertion into a sorted list managed using WSTM. The structure mirrors Figure 2 ex-
cept the WSTM implementation tracks which locations have been accessed based on the calls to
WSTMRead and WSTMWrite.

1 typedef struct { int key; ostm handle<node*> *next; } node;
typedef struct { ostm handle<node*> *head; } list;

3 void list insert (list *l, int k) {
node *n := new node(k);

5 ostm handle<node*> := new ostm handle(n);

do {
7 ostm transaction *tx := OSTMStartTransaction();

ostm handle<node*> *prev obj := l→head;
9 node *prev := OSTMOpenForReading(tx, prev obj);

ostm handle<node*> *curr obj := prev→next;
11 node *curr := OSTMOpenForReading(tx, curr obj);

while (curr→key < k) {
13 prev obj := curr obj; prev := curr;

curr obj := prev → next; curr := OSTMOpenForReading(tx, curr obj);
15 }

n→next := curr obj;
17 prev := OSTMOpenForWriting(tx, prev obj);

prev→next := n;
19 } while (¬OSTMCommitTransaction(tx));

}

Fig. 4. Insertion into a sorted list managed using OSTM. The code is more verbose than Figure 3
because data is accessed by indirection through OSTM handles which must be opened before use.

illustrates this style of programming: each object is accessed through an OSTM
handle which must be subject to an OSTMOpenForReading or OSTMOpenForWriting
call in order to obtain access to the underlying data. The code looks more verbose
than WSTM in simple examples like this but the OSTM implementation is much
more straightforward and often performs faster and more predictably.

While these techniques do not provide a silver-bullet to designing scalable concur-
rent data structures they represent a shift of responsibility away from the program-
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 5

mer: the abstraction’s implementation is responsible for correctly ensuring that
conflicting operations do not proceed concurrently and for preventing deadlock and
priority-inversion between concurrent operations. The programmer remains respon-
sible for ensuring scalability by making it unlikely that concurrent operations will
need to modify the same words. However, this is a performance problem rather
than a correctness or liveness one and, in our experience, even straightforward
data structures, developed directly from sequential code, offer performance that
competes with and often surpasses state-of-the-art lock-based designs.

1.1 Goals

We set ourselves a number of goals in order to ensure that our designs are practical
and perform well when compared with lock-based schemes:

Concreteness. We must consider the full implementation path down to the in-
structions available on commodity CPUs. This means we build from atomic single-
word read, write and compare-and-swap (CAS) operations.

Linearizability. In order for functions such as MCAS to behave as expected in
a concurrent environment we require that their implementations be linearizable,
meaning that they appear to occur atomically at some point between when they
are invoked and when they return [Herlihy and Wing 1990].

Non-blocking behaviour. In order to provide robustness against liveness problems
such as deadlock our abstractions should be non-blocking. This means that even if
any set of threads is stalled the remaining threads can still make progress.

Disjoint-access parallelism. Our abstractions should avoid introducing contention
in the sets of memory locations they access: operations which access disjoint sets
of words in memory must be able to execute in parallel.

Read parallelism. Our abstractions should preserve the ability for sets of opera-
tions performing read-only accesses to execute in parallel throughout the memory
subsystem. This is important for scalability: fetching a location from the cache
of another CPU can be hundreds of times slower than fetching it from a local
cache [Hennessy and Patterson 2003] and so we must not prevent locations from
being cached in shared mode.

Practicable space costs. Storage costs should scale well with the number of threads
and the volume of data managed using the abstraction. It is generally unaccept-
able to reserve more than two bits in each word (often such bits are always zero if
locations hold aligned pointers) and it is desirable to avoid doing even that if words
are to hold unrestricted values.

Composability. If multiple data structures separately provide operations built
with one of our abstractions then these should be composable to form a single
compound operation which occurs atomically (and which can itself be composed
with others).

All our abstractions have concrete, linearizable, non-blocking implementations.
Table I indicates the extent to which they meet our other goals.

We also have a number of non-goals: (i) although these APIs can be used con-
currently in the same application, we do not intend that they be used to manage
parts of the same data structure, (ii) we defer the problem of storage management

ACM Journal Name, Vol. V, No. N, M 20YY.

6 · K. Fraser and T. Harris

Table I. Assessment of our three abstractions against our goals.

MCAS WSTM OSTM

Progress
guarantee

lock-freedom
obstruction-
freedom

lock-freedom

Update parallelism
when accessing
disjoint sets of
words

probabilistically
when accessing
disjoint sets of
words

when accessing
disjoint sets of
objects

Read parallelism no yes yes

Quiescent space
cost

2 bits reserved in
each word

fixed size table
(e.g. 65 536 4-byte
entries)

one word in each
object header

Composability no yes yes

of application data to automatic garbage collection, or to schemes such as Her-
lihy et al’s [2002], or Michael’s [2002b], or to limbo-lists [Fraser 2003], and, (iii)
where a system exhibits high contention we assume that separate contention man-
agement will be employed, for instance using a plug-in contention manager of the
kind Scherer and Scott describe [2004].

1.2 Source code availability

Source code for our MCAS, WSTM and OSTM systems, data structure implemen-
tations and test harnesses is available for Alpha, Intel IA-32, Intel IA-64, MIPS,
PowerPC and SPARC processor families at http://www.cl.cam.ac.uk/netos/
lock-free.

1.3 Structure of this paper

In Section 2 we present the interface to the three alternative abstractions and com-
pare and contrast their features and the techniques for using them effectively. We
discuss previous work with respect to our goals in Section 3; in summary, previous
designs have required unrealistic hardware primitives, had unrealistic storage costs
or offered only lacklustre performance or scalability.

In Section 4 we describe our overall design method and the common facets of each
of our designs. In Sections 5–7 we explore the details of these three abstractions in
turn and present our design, its relationship to previous work and, where applicable,
to contemporary work which has had similar goals of practicability [Herlihy et al.
2003].

In Section 8 we evaluate the performance of data structures built over each of
the abstractions, both in comparison with one another and in comparison with
high-quality lock-based schemes. We use skip-lists and red-black trees as running
examples, highlighting any particular issues that arise when adapting a sequential
implementation for concurrent use. Finally, Section 9 concludes.
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 7

2. PROGRAMMING ABSTRACTIONS

In this section we present the programming interfaces for using MCAS, WSTM
and OSTM. These each provide mechanisms for accessing and/or modifying mul-
tiple unrelated words in a single atomic step; however, they differ in the way in
which those accesses are specified and the adaptation required to make a sequential
operation safe for multi-threaded use.

2.1 Multi-word compare-and-swap (MCAS)

Multi-word compare-&-swap (MCAS) extends the well-known hardware CAS prim-
itive to operate on an arbitrary number of memory locations simultaneously. As
with the linked-list example shown in Figure 2, it is typically used by preparing a
list of updates to make in a thread-private phase before invoking MCAS to apply
them to the heap. MCAS is defined to operate on N distinct memory locations
(ai), expected values (ei), and new values (ni): each ai is updated to value ni if and
only if each ai contains the expected value ei before the operation. MCAS returns
TRUE if these updates are made and FALSE otherwise.

Heap accesses to words which may be subject to a concurrent MCAS must be
performed using MCASRead operations. These provide extra flexibility to the im-
plementation so that it need not retain data it is updating ‘in the clear’. The
locations being updated must hold aligned pointer values, allowing the implemen-
tation to use low-order bits (which would otherwise be zero) for its own purposes.
The full API is consequently:

1 // Update locations a[0]..a[N-1] from e[0]..e[N-1] to n[0]..n[N-1]

bool MCAS (int N, word **a[], word *e[], word *n[]);

3 // Read the contents of location a

word *MCASRead (word **a);

This API is effective when a small number of locations can be identified which
need to be accessed to update a data structure from one consistent state to another
particularly if, as in our linked-list example, the locations and values involved are
directly available from local variables.

Using MCAS also allows skilled programmers to reduce contention between con-
current operations by paring down the set of locations passed to each atomic update,
or by decomposing a series of related operations into a series of MCAS calls. For
instance, when inserting a node into a sorted linked-list, we relied on the structure
of the list and the immutability of key fields to allow us to update just one location
rather than needing to check that the complete chain of pointers traversed has not
been modified by a concurrent thread. However, this flexibility presents a potential
pit-fall for novice programmers.

The API also precludes our goal of composability.

2.2 Word-based software transactional memory (WSTM)

Although MCAS eases the burden of ensuring correct synchronisation of updates,
many data structures also require consistency among groups of read operations and
it is cumbersome for the application to track these and present them as arrays of
‘no-op’ updates to MCAS. For instance, consider searching within a move-to-front
list, in which a successful search promotes the discovered node to the head of the

ACM Journal Name, Vol. V, No. N, M 20YY.

8 · K. Fraser and T. Harris

H 2 3 T1

BA

H T3 1

Moved to head
of list by op B.

2

A

(a) (b)

Fig. 5. The need for read consistency: a move-to-front linked list subject to two searches for node
3. In snapshot (a), search A is preempted while passing over node 1. Meanwhile, in snapshot (b),
search B succeeds and moves node 3 to the head of the list. When A continues execution, it will
incorrectly report that 3 is not in the list.

list. As indicated in Figure 5, a näıve search algorithm which does not consider
synchronisation with concurrent updates may incorrectly fail, even though each
individual read from shared memory operates on a consistent snapshot of the list.

Software transactional memories provide a way of dealing with these problems by
grouping shared-memory access into transactions which appear to succeed or fail
atomically. Furthermore, composability is gained by allowing nested transactions:
a series of WSTM transactions can be composed by bracketing them within a
further transaction. In general, our implementation of the WSTM API allows a
transaction to commit so long as no other thread has committed an update to one
of the locations that has been accessed.

Within a transaction, data accesses are performed by WSTMRead and WSTMWrite
operations. As with MCAS, programmers are responsible for using these operations
when accessing words which may be subject to a concurrent WSTMCommitTrans-
action. Of course, this may be automated by a managed run-time environment, as
we have demonstrated in practice [Harris and Fraser 2003].

Unlike MCAS, our WSTM implementation does not reserve space in each word,
allowing it to act on full word-size data rather than just pointer-valued fields in
which ‘spare’ bits can be reserved. The full API is:

1 // Transaction management

wstm transaction *WSTMStartTransaction();

3 bool WSTMCommitTransaction(wstm transaction *tx);

bool WSTMValidateTransaction(wstm transaction *tx);

5 void WSTMAbortTransaction(wstm transaction *tx);

// Data access

7 word WSTMRead(wstm transaction *tx, word *a);

void WSTMWrite(wstm transaction *tx, word *a, word d);

As we will show later, the easier-to-use interface often results in reduced perfor-
mance compared with MCAS.

2.3 Object-based software transactional memory (OSTM)

The third API, OSTM provides an alternative transaction-based interface. As with
WSTM, data managed with OSTM can hold full word-size values and transactions
can nest allowing composability.

However, rather than accessing words individually, a programmer using OSTM
accesses objects through a level of indirection provided by OSTM handles. OSTM
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 9

objects are allocated and deallocated by OSTMNew and OSTMFree which behave
analogously to the standard malloc and free functions, but act on pointers to OSTM
handles rather than directly on pointers to objects.

Before the data it contains can be accessed, an OSTM handle must be opened in
order to obtain a private copy of the underlying object – this is done by OSTMOpen-
ForReading and OSTMOpenForWriting which take handles of type ostm handle<t*>
and return object pointers of type t* on which ordinary memory access operations
can be invoked. Both of these open operations are idempotent: if the object has
already been opened for the same access mode within the specified transaction then
the same pointer will be returned again.

The OSTM interface leads to a different cost profile from WSTM: OSTM intro-
duces a cost of opening objects for access and potentially producing shadow copies
to work on, but subsequent data access is made directly (rather than through func-
tions like WSTMRead and WSTMWrite) and it admits a simplified non-blocking
commit operation. The programmer must be careful not to update objects that are
open in read-only mode because these may be shared with other threads – viola-
tions of this requirement can, of course, be checked at commit-time in a debugging
mode.

The OSTM API is:
1 // Transaction management

ostm transaction *OSTMStartTransaction();

3 bool OSTMCommitTransaction(ostm transaction *tx);

bool OSTMValidateTransaction(ostm transaction *tx);

5 void OSTMAbortTransaction(ostm transaction *tx);

// Data access

7 t *OSTMOpenForReading(ostm transaction *tx, ostm handle<t*> *o);

t *OSTMOpenForWriting(ostm transaction *tx, ostm handle<t*> *o);

9 // Storage management

ostm handle<void*> *OSTMNew(size t size);

11 void OSTMFree(ostm handle<void*> *ptr);

3. RELATED WORK

The literature contains several designs for abstractions such as MCAS, WSTM
and OSTM. However, these have generally not shared our goals of practicality
– for instance much work builds on instructions such as DCAS or strong-LL/SC
which are not available as primitives in contemporary hardware. Our experience
is that although this foundational work has highlighted the problems which exist
and has introduced terminology and conventions for presenting and reasoning about
algorithms, it has not been possible to effectively implement or use these algorithms
by layering them above software implementations of strong-LL/SC or DCAS. For
instance when considering strong-LL/SC, Jayanti and Petrocvic’s recent design
reserves four words of storage per thread for each word that may be accessed [Jayanti
and Petrovic 2003]. Other designs reserve N or logN bits of storage within each
word when used with N threads: such designs can only be used when N is small.
When considering DCAS, it appears no easier to build a general purpose DCAS
operation than it is to implement our MCAS design.

ACM Journal Name, Vol. V, No. N, M 20YY.

10 · K. Fraser and T. Harris

This section is split into three parts. Firstly, in Section 3.1 we introduce the
terminology of non-blocking systems and describe the progress guarantees that
they make. These properties underpin the liveness guarantees that are provided to
users of our algorithms. Secondly, in Section 3.2 we discuss the design of ‘universal’
transformations that build non-blocking systems from sequential code or from lock-
based code. Finally, in Section 3.3, we present previous designs for multi-word
abstractions such as MCAS, WSTM and OSTM and we assess them against our
goals.

3.1 Non-blocking systems

Non-blocking algorithms have been studied as a way of avoiding the liveness prob-
lems that are possible when using traditional locks [Herlihy 1993]. A design is
non-blocking if the suspension or failure of any number of threads cannot prevent
the remainder of the system from making progress. This provides robustness against
poor scheduling decisions as well as against arbitrary thread termination. It natu-
rally precludes the use of ordinary locks because, unless a lock-holder continues to
run, the lock can never be released.

Non-blocking algorithms can be classified according to the kind of progress guar-
antee that they make:

— Obstruction-freedom is the weakest form of guarantee: a thread performing
an operation on the data structure is only guaranteed to make progress so long as it
does not contend with other threads for access to any location [Herlihy et al. 2003].
This requires an out-of-band mechanism to avoid livelock; exponential backoff is
one option.

— Lock-freedom adds the requirement that the system as a whole makes progress,
even if there is contention. In some cases, lock-free algorithms can be developed
from obstruction-free ones by adding a helping mechanism: if thread t2 encounters
thread t1 obstructing it then t2 helps t1 to complete t1’s operation. Once that is
done t2 can proceed with its own operation and hopefully not be obstructed again.
This is sufficient to prevent livelock, although it does not offer any guarantee of
per-thread fairness.

— Wait-freedom adds the requirement that every thread makes progress, even if
it experiences contention. This gives a hard bound on the number of instructions
that need to be executed to perform any operation. However, it is seldom possible
to develop wait-free algorithms that offer competitive practical performance.

Some previous work has used the terms ‘lock-free’ and ‘non-blocking’ interchange-
ably: we follow Herlihy et al’s recent usage in using lock-freedom to denote a par-
ticular kind of non-blocking behaviour [Herlihy et al. 2003]. In this paper we con-
centrate on lock-free algorithms, although we highlight where simplifications can be
made to our implementations by designing them to satisfy the weaker requirement
of obstruction freedom.

3.2 Universal constructions

Universal constructions are a class of design technique that can straightforwardly
transform a sequential data structure into one that is safe for concurrent usage.
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 11

Herlihy’s original scheme requires a snapshot of the entire structure to be copied
to a private location where shadow updates can safely be applied: these updates
become visible when the single ‘root’ pointer of the structure is atomically checked
and modified to point at the shadow location [Herlihy 1993]. This means that
concurrent updates will always conflict, even when they modify disjoint sections of
the data structure.

Turek et al devised a hybrid scheme that may be applied to develop lock-free
systems from deadlock-free lock-based ones [Turek et al. 1992]. Each lock in the
original algorithm is replaced by an ownership reference which is either NULL or
points to a continuation describing the sequence of virtual instructions that remain
to be executed by the lock ‘owner’. This allows conflicting operations to execute
these instructions on behalf of the owner and then take ownership themselves, rather
than blocking on the original lock. Interpreting a continuation is cumbersome: after
each ‘instruction’ is executed, a virtual program counter and a non-wrapping version
counter are atomically modified using a double-width CAS operation which acts on
an adjacent pair of memory locations.

Barnes proposes a similar technique in which mutual-exclusion locks are replaced
by pointers to operation descriptors [Barnes 1993]. Lock-based algorithms are con-
verted to operate on a private copy of the data structure; then, after determining
the sequence of updates to apply, each required ‘lock’ is acquired in turn by making
it point to the descriptor, the updates are performed, and finally the ‘locks’ are
released. Copying is avoided if contention is low by observing that the private copy
of the data structure may be cached and reused across a sequence of operations.
This two-phase algorithm requires strong-LL/SC operations.

3.3 Programming abstractions

Although universal constructions have the benefit of requiring no manual modifi-
cation to existing sequential or lock-based programs, each exhibits some substan-
tial performance or implementation problem which places it beyond practical use.
Another class of techniques provides high-level programming abstractions which,
although not automatic ‘fixes’ to the problem of constructing non-blocking algo-
rithms, make the task of implementing non-blocking data structures much easier
compared with using atomic hardware primitives directly. The two best-known
abstractions are multi-word compare-&-swap (MCAS) and forms of software trans-
actional memory (STM).

Israeli and Rappaport described the first design which builds a lock-free MCAS
from strong-LL/SC [Israeli and Rappoport 1994]. For N threads, their method for
building the required LL/SC from CAS reserves N bits within each updated mem-
ory location; the MCAS algorithm then proceeds by load-locking each location in
turn, and then attempting to conditionally-store each new value in turn. The space
cost of implementing the required strong-LL/SC makes their design impractical.

Anderson and Moir designed a wait-free version of MCAS that also requires
strong-LL/SC [Anderson and Moir 1995]. They improved on Israeli and Rappa-
port’s space costs by constructing strong-LL/SC using logN reserved bits per up-
dated memory location rather than N . This bound is achieved at the cost of
considerable bookkeeping to ensure that version numbers are not reused. A further
drawback is that the accompanying MCASRead operation is based on primitives that

ACM Journal Name, Vol. V, No. N, M 20YY.

12 · K. Fraser and T. Harris

acquire exclusive cache-line access for the location, preventing read parallelism.
Moir developed a streamlined version of this algorithm which provides ‘condi-

tionally wait-free’ semantics [Moir 1997]. Specifically, the design is lock-free but
an out-of-band helping mechanism may be specified which is then responsible for
helping conflicting operations to complete. This design suffers many of the same
weaknesses as its ancestor; in particular, it requires strong-LL/SC and does not
provide a read-parallel MCASRead.

Anderson et al provide further versions of MCAS suitable for systems using strict
priority scheduling [Anderson et al. 1997]. Both algorithms store a considerable
amount of information in memory locations subject to MCAS updates: a valid bit,
a process identifier (logN bits), and a ‘count’ field (which grows with the base-2
logarithm of the maximum number of addresses specified in an MCAS operation).
Furthermore, their multiprocessor algorithm requires certain critical sections to be
executed with preemption disabled, which is not generally feasible.

Greenwald presents a simple MCAS design in his PhD dissertation [Greenwald
1999], which constructs a record describing the entire operation and installs it into
a single shared location which indicates the sole in-progress MCAS operation. If
installation is prevented by an already-running MCAS, then the existing opera-
tion is helped to completion and its record is then removed. Once installed, an
operation proceeds by executing a DCAS operation for each location specified by
the operation: one update is applied to the address concerned, while the other
updates a progress counter in the operation record. This can be seen as concep-
tually similar to Turek’s continuation-based scheme [Turek et al. 1992]. The use
of a single shared installation-point prevents the design from being disjoint-access
parallel. Greenwald’s subsequent technique of ‘two-handed emulation’ generalised
this scheme but did not address the lack of disjoint-access parallelism [Greenwald
2002].

Herlihy and Moss first introduced the concept of a transactional memory, which
allows shared-memory operations to be grouped into atomic transactions [1993].
They originally proposed a hardware design which leverages existing multiprocessor
cache-coherency mechanisms. Rajwar and Goodman have subsequently suggested
similar techniques for speculatively executing lock-based code [2002; 2001]. The
major practical drawback of these designs is that, even if they were to be imple-
mented, hardware would impose limits on the volume of data that could be subject
to a single transactional access: software mechanisms, such as those that we have
investigated, would be necessary when these limits are breached.

Shavit and Touitou proposed a software-based lock-free transactional memory
built from strong-LL/SC [Shavit and Touitou 1995]. A notable feature is that they
abort contending transactions rather than recursively helping them, as is usual in
lock-free algorithms; non-blocking behaviour is still guaranteed because aborted
transactions help the transaction that aborted them before retrying. Their design
supports only ‘static’ transactions, in which the set of accessed memory locations
is known in advance — the interface is therefore analogous to MCAS rather than
subsequent STM designs, including our own.

Moir presents lock-free and wait-free STM designs [Moir 1997] with a dynamic
programming interface. The lock-free design divides the transactional memory into
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 13

fixed-size blocks which form the unit of concurrency. A header array contains
a word-size entry for each block in the memory, consisting of a block identifier
and a version number. The initial embodiment of this scheme required arbitrary-
sized memory words and suffered the same drawbacks as the conditionally wait-free
MCAS on which it builds: bookkeeping space is statically allocated for a fixed-size
heap, and the read operation is potentially expensive. Moir’s wait-free STM extends
his lock-free design with a higher-level helping mechanism.

Recently, Herlihy et al have implemented an obstruction-free STM [Herlihy et al.
2003]. It was developed concurrently with our work and shares many of our goals.
Firstly, the memory is dynamically sized: memory blocks can be created and de-
stroyed on the fly. Secondly, an implementation is provided which is built using
CAS. Finally, the design is disjoint-access parallel and, in one implementation,
transactional reads do not cause writes to occur in the underlying STM. These fea-
tures serve to significantly decrease contention in many multiprocessor applications,
and are all shared with our lock-free OSTM. This makes Herlihy et al’s design an
ideal candidate for comparison in Section 8.

4. DESIGN METHOD

Our implementations of the three APIs in Sections 2.1–2.3 have to solve a set of
common problems and, unsurprisingly, use a number of similar techniques.

The key problem is that of ensuring that a set of memory accesses appear to occur
atomically when they are being built from machine instructions accessing separate
words. Our fundamental approach is to deal with this problem by decoupling the
notion of a location’s physical contents in memory from its logical contents when
accessed through one of the APIs. The physical contents can, of course, only be
updated one word at a time. However, as we shall show, we arrange that the logical
contents of a set of locations can be updated atomically.

For each of the APIs there is only one operation which updates the logical con-
tents of memory locations: MCAS, WSTMCommitTransaction and OSTMCommit-
Transaction. We call these operations collectively the commit operations and they
are the main source of complexity in our designs.

For each of the APIs we present our design in a series of four steps:

(1) Define the format of the heap, the temporary data structures that are used and
how an application goes about allocating and deallocating memory for data
structures that will be accessed through the API.

(2) Define the notion of logical contents in terms of these structures and show
how it can be computed using a series of single-word accesses. This underpins
the implementation of all functions other than the commit operations. In this
step we are particularly concerned with ensuring non-blocking behaviour and
read-parallelism so that, for instance, two threads can perform WSTMRead
operations to the same location at the same time without producing conflicts
in the memory hierarchy.

(3) Show how the commit operation arranges to atomically update the logical state
of a set of locations when it executes without interference from concurrent
commit operations. In this stage we are particularly concerned with ensuring

ACM Journal Name, Vol. V, No. N, M 20YY.

14 · K. Fraser and T. Harris

disjoint-access parallelism so that threads can commit updates to disjoint sets
of locations at the same time.

(4) Show how contention is resolved when one commit operation’s progress is im-
peded by a conflicting commit operation. In this step we are concerned with
ensuring non-blocking behaviour so that the progress is not prevented if, for
example, the thread performing the existing commit operation has been pre-
empted.

Before considering the details of the three different APIs we discuss the common
aspects of each of these four steps in Sections 4.1–4.4.

4.1 Memory formats

All three of our implementations introduce descriptors which set out the ‘before’
and ‘after’ versions of the memory accesses that a particular commit operation
proposes to make along with a status field, indicating how far the commit operation
has progressed. These descriptors satisfy three properties which make it easier to
manage them in a concurrent system:

Firstly, descriptors are conceptually managed by garbage collection rather than
being re-used directly. This means that if a thread holds a reference to a given
descriptor then it can be sure that it has not been re-used for another purpose. Of
course, in practice, we do not mandate the use of a tracing garbage collector and
can use schemes such as reference counting to encourage prompt reuse and affinity
between descriptors and threads.

The second property is that, once a descriptor is exposed to other threads through
a given location, each of the entries it holds relating to that location is read-only.
This means that a thread can read from a series of such locations (e.g., in the case
of an MCAS descriptor to read the location accessed and a value that is proposed
to be written there) and be sure of receiving a consistent view of those locations.

The third property is that, once the outcome of a particular commit operation
has been decided then the descriptor’s status field remains constant: if a thread
wishes to retry a commit operation, e.g. if the code in Figures 2–4 loops, then each
retry uses a fresh descriptor. This means that threads reading from a descriptor
and seeing that the outcome has been decided can be sure that the status field will
not subsequently change.

The combination of the first two properties is important because it allows us
to avoid many A-B-A problems in which a thread is about to perform a CAS
conditional on a location holding a value A, but then a series of operations by other
threads changes the value to B and then back to A allowing the delayed CAS to
succeed. These two properties mean that there is effectively a one-to-one association
between descriptor references and the intent to perform a given multi-word update.

4.2 Logical contents

Each of our API implementations uses descriptors to define the logical contents
of memory locations by providing a mechanism for a descriptor to own a set of
memory locations.

In general, when a commit operation relating to it is not in progress, then a
location is unowned and it holds its logical contents directly. Otherwise, when a
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 15

Linearization
point

Decision
pointoperation operation

Start commit Finish commit

0. Read a1 1. Acquire a2 2. Check a1 3. Release a2

Exclusive access to location updated retained from 1 until 3

Location read guaranteed valid from 0 until 2

Fig. 6. Timeline for the three phases used in commit operations. The grey bar indicates when the
commit operation is executed; prior to this the thread prepares the heap accesses that it wants
to commit. In this example location a1 has been read but not updated and location a2 has been
updated. The first phase acquires exclusive access to the locations being updated. The second
phase checks that locations read have not been updated by concurrent threads. The third phase
releases exclusive access after making any updates. The read-check made at point 2 ensures that
a1 is not updated between 0 and 2. The acquisition of a2 ensures exclusive access to it between 1
and 3.

location is owned, the logical contents are taken from the descriptor and chosen
from the ‘before’ and ‘after’ versions based on the descriptor’s status field. This
means that updating the status field has the effect of updating the logical contents
of the whole set of locations that the descriptor owns.

We use different mechanisms for representing ownership in each design: with
MCAS ownership is represented by installing a pointer to a descriptor in the lo-
cation itself, limiting the range of values that an application can store in each
word because it is necessary to distinguish pointers to descriptors from ordinary
values. WSTM represents ownership using separate ‘ownership records’ associated
with each location, allowing full word-size values to be used but adding complexity.
OSTM manages ownership on an object-by-object basis by updating information
in the object’s header.

4.3 Uncontended commit operations

The commit operations themselves are each structured in three stages. A first
phase acquires exclusive (but revocable) ownership of the locations being updated, a
second read-check phase ensures that locations that have been read but not updated
hold the values expected in them. This is followed by the decision point at which
the outcome of the commit operation is decided and made visible to other threads
through the descriptor’s status field, and then the final release phase in which the
thread relinquishes ownership of the locations being updated.

A descriptor’s status field is initially UNDECIDED at the start of a commit op-
eration. If there is a read-check phase then the status is set to READ-CHECK for
the relevant duration. At the decision point it set to SUCCESSFUL if all of the
required ownerships were acquired and the read-checks succeeded; otherwise it is
set to FAILED.

In order to show that an entire commit operation is atomic we identify a lin-
earization point within its execution at which it appears to operate atomically on

ACM Journal Name, Vol. V, No. N, M 20YY.

16 · K. Fraser and T. Harris

the logical contents of the heap from the point of view of other threads. As Figure 6
shows, the linearization point occurs at the start of the read-check phase whereas
the decision point, at which the outcome is actually signalled to other threads,
occurs at the end of the read-check phase.

This choice of linearization point may appear perverse: how can an operation
commit its updates before it has finished checking its assumptions? The rationale
for this is that holding ownership of the locations being updated ensures that these
remain under the control of this descriptor from acquisition until release (1 until 3
in Figure 6). Similarly, read-checks ensure that any locations accessed in a read-
only mode have not been updated1 between points 0 and 2. Both of these intervals
include the proposed linearization point, even though it precedes the decision point.

Between the linearization point and the decision point, it is not possible to de-
termine the logical contents of locations being updated because the outcome of
the commit operation has not been decided. The key insight is that this is not a
problem if, when a commit operation is between its linearization point and deci-
sion point, any thread encountering its descriptor can help advance it to it decision
point.

4.4 Contended commit operations

In order to achieve non-blocking behaviour we have to be careful about how to pro-
ceed when one thread t2 encounters a location that is currently owned by another
thread t1. Although we aim to provide non-blocking mechanisms for contention
resolution, and require some form of helping when a READ-CHECK phase is en-
countered, it is worth noting that there are, of course, a number of simpler options
of how to proceed:

—A basic strategy is to spin-wait until the current owner releases ownership. Note
that since data is only acquired during commit operations this window of con-
tention is likely to be small and operating system interfaces such as Solaris’
schedctl can attempt to prevent preemption during this time.

—A further strategy is to abort the operation that encounters the contention (t2 in
this case). Although this is still not non-blocking, it may be appropriate where
contention indicates that the subsequent commit is doomed to abort in any case
because t1 will make a conflicting update.

These schemes perform well in practice where priority inversion or thread termi-
nation is not a problem; they can avoid deadlock by sorting the resources that they
have to acquire.

If non-blocking behaviour is required then there are two general strategies:

—The first strategy is for t2 to cause t1 to abort if it has not yet reached its
decision point. This leads to obstruction-free behaviour and the risk of livelock
unless contention management is employed to prevent t1 retrying its operation
and aborting t2.

1Of course, the correctness of this argument does not allow the read-checks to simply consider the
values in the locations because that would allow A-B-A problems to emerge if the locations are
updated multiple times between 0 and 2 – our WSTM and OSTM designs which use read-check
phases must check versioning information rather than just values.

ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 17

A B

x
readingreading y

data read: y
data updated: x

data read: x
data updated: y

status: READ−CHECK status: READ−CHECK

Fig. 7. An example of a dependent cycle of two operations, A and B. Each needs the other to
exit its read phase before it can complete its own.

—The second strategy is for t2 to help t1 complete its operation. This kind of
recursive helping leads to lock-free behaviour because it ensures that the thread
at the head of a chain of helping will complete its commit operation.

There is one final complication when using a read-check phase and aiming for
lock-free behaviour: what happens if there is a cycle of commit operations, all in
their read phase and each trying to read an object that is currently owned by the
next? Näıvely helping operations in their read phases risks developing an endless
cycle of helping. The simple example in Figure 7 shows how this can occur.

The solution is to abort at least one of the operations to break the cycle; however,
care must be taken not to abort them all if we wish to ensure lock-freedom rather
than obstruction-freedom. For instance, with STM, this can be done by imposing a
total order ≺ on all operations, based on the machine address of each transaction’s
descriptor. The loop is broken by allowing a transaction tx1 to abort a transaction
tx2 if and only if: (i) both are in their read phase; (ii) tx2 owns a location that tx1
is attempting to read; and (ii) tx1 ≺ tx2. This guarantees that every cycle will be
broken, but the ‘least’ transaction in the cycle will continue to execute. Of course,
other orderings can be used if fairness is a concern.

5. MULTI-WORD COMPARE-&-SWAP (MCAS)

We now introduce our practical design for implementing the MCAS API. MCAS
extends the single-word CAS primitive to operate on multiple locations simultane-
ously. More precisely, MCAS is defined to operate on N distinct memory locations
(ai), expected values (ei), and new values (ni): each ai is updated to value ni if
and only if each ai contains the expected value ei before the operation.

The implementation of MCAS is simpler than the two STMs because it does
not involve a read-check phase. If the arrays passed to MCAS happen to specify
the same value as ei and ni then this is treated in the same manner as an update
between two values. It would be incorrect to use a separate read-check phase
because, without version numbers, there is no guarantee that if a series of checks
succeed that there is any valid linearization point at which all of the locations
simultaneously held the values seen.

We initially define the implementation of MCAS using an intermediate condi-
tional compare-&-swap operation. CCAS uses a second conditional memory loca-
tion to control the execution of a normal CAS operation. If the contents of the
conditional location are zero then the operation proceeds, otherwise CCAS has no
effect. The conditional location may not itself be subject to updates by CCAS or

ACM Journal Name, Vol. V, No. N, M 20YY.

18 · K. Fraser and T. Harris

1 word *MCASRead (word **a) {
word *v;

3 retry read:
v := CCASRead(a);

5 if (IsMCASDesc(v))
for (int i := 0; i < v→N; i ++)

7 if (v→a[i] = a) {
if (v→status = SUCCESSFUL)

9 if (CCASRead(a) = v) return v→n[i];
else

11 if (CCASRead(a) = v) return v→o[i];
goto retry read;

13 }
return v;

15 }

Fig. 8. MCASRead operation used by applications to read from locations which may be subject
to concurrent MCAS operations.

MCAS. CCASRead operations must be used to read from locations that may be
updated by CCAS.

atomically void CCAS (word **a, word *e, word *n, word *cond) {
if ((*a = e) ∧ (*cond = 0)) *a := n;

}
atomically word *CCASRead (word **a) {

return *a;

}

Unlike the DCAS and strong-LL/SC operations used by previous work, CCAS
has a straightforward implementation using CAS; we present this in Section 5.4.

5.1 Memory formats

Each MCAS descriptor sets out the updates to be made (a set of (ai, ei, ni) tuples)
and the current status of the operation (UNDECIDED, FAILED, or SUCCESSFUL).
In our pseudocode we define an MCAS descriptor as:

1 typedef struct {
word status;

3 int N;

word **a[], *e[], *n[];

5 } MCASDesc;

The MCAS API can be used on data structures held in arbitrary heap locations
subject, in our implementation, to the restriction that two bits of storage can be
reserved in each location. In practice this means that it can act on pointer-valued
data in which the pointers refer to naturally-aligned words in memory. A heap
location is ordinarily unowned, in which case it holds the value logically stored
there, or it refers to an MCAS descriptor which is said to own it and which describes
a commit operation that it is being attempted on the location.
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 19

5.2 Logical contents

There are four cases to consider when defining the logical contents of a location. If
the location holds an ordinary value then that is the logical contents of the location.
If the location refers to an UNDECIDED descriptor then the descriptor’s old value
(ei) is the location’s logical contents. If the location refers to a FAILED descriptor
then, once more, the old value forms the location’s logical contents. If the location
refers to a SUCCESSFUL descriptor then the new value (ni) is the logical contents.

The assumptions made about descriptor usage in Section 4.1 make it straightfor-
ward to determine the logical contents of a location because a series of words can
be read from the descriptor without fear of it being deallocated or being updated
(other than the status field at the decision point).

Figure 8 presents this in pseudocode. If the location does not refer to a descriptor
then the contents are returned directly and this forms the linearization point of the
read operation (line 4). Otherwise, the descriptor is searched for an entry relating
to the address being read (line 7) and the new value or old value returned as
appropriate so long as the descriptor still owns the location. In this case the last
check of the status field before returning forms the linearization point (line 8) and
the re-check of ownership (line 9 or line 11) ensures that the status field was not
checked ‘too late’ once the descriptor had lost ownership of the location and was
consequently not determining its logical contents.

5.3 Commit operations

Figure 9 illustrates the progress of an uncontended MCAS commit operation at-
tempting to swap the contents of addresses a1 and a2.

Figure 10 presents the algorithm in pseudocode. The first phase (lines 10–19)
attempts to acquire each location ai by updating it from its expected value, ei, to a
reference to the operation’s descriptor. Note that the CCAS operation invoked on
ai must preserve the logical state of the location: either the CCAS fails (making no
updates), or it succeeds, installing a reference to a descriptor holding ei as the old
value for ai. The ‘conditional’ part of CCAS ensures that the descriptor’s status is
still UNDECIDED, meaning that ei is correctly defined as the logical contents of ai.

Note that the algorithm must acquire update locations in address order. This
ensures that recursive helping eventually results in system-wide progress because
each level of recursion must be caused by a conflict at a strictly higher memory
address than the previous level. To ensure that updates are ordered correctly the
update locations are sorted before calling MCASHelp (lines 4–5). The sort can be
omitted if the caller ensures that addresses are specified in some global total order.

The first phase terminates when the loop has completed each location, mean-
ing that the descriptor has been installed in each of them (line 13), or when an
unexpected non-descriptor value is seen (line 16).

The first thread to reach the decision point for a descriptor must succeed in
installing SUCCESSFUL or FAILED. If the MCAS has failed then the point at which
an unexpected value was seen forms the linearization point of the operation: the
unexpected value was the logical contents of the location and it contradicts the
expected value ei for that location. Otherwise, if the MCAS has succeeded, note
that when the status field is updated (line 22) then all of the locations ai must refer

ACM Journal Name, Vol. V, No. N, M 20YY.

20 · K. Fraser and T. Harris

descriptors

tx1

Status: UNDECIDED

MCAS

a1: 100 −> 200

a2: 200 −> 100

Application
heap

a2

a1

200

100

(a) The operation executes in private until it invokes MCAS. The MCAS descriptor holds the
updates being proposed: in this case the contents of a1 and a2 are to be swapped.

a2

a1

200

100
tx1

a1: 100 −> 200

a2: 200 −> 100

Status: UNDECIDED

(b) CCAS is used to acquire ownership of addresses a1, replacing the values expected there with
references to the MCAS descriptor. The updates are conditional on the descriptor remaining

UNDECIDED in order to guarantee that the locations’ logical contents do not change.

a2

a1

200

tx1

a1: 100 −> 200

a2: 200 −> 100

Status: UNDECIDED

(c) Similarly, CCAS is used to acquire ownership of addresses a2.

a2

a1
tx1

a1: 100 −> 200

a2: 200 −> 100

Status: UNDECIDED

(d) CAS is used to set the status to SUCCESSFUL. This has the effect of atomically updating
the locations’ logical contents.

a2

a1
tx1

a1: 100 −> 200

a2: 200 −> 100

Status: SUCCESSFUL

(e) Ownership is released on a1, installing the new value.

a2

a1
tx1

a1: 100 −> 200

a2: 200 −> 100

Status: SUCCESSFUL200

(f) Similarly, ownership is released on a2, installing the new value.

Fig. 9. An uncontended commit swapping the contents of a1 and a2. Grey boxes show where CAS
and CCAS operations are to be performed at each step. While a location is owned, its logical
contents remain available through the MCAS descriptor.

ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 21

1 bool MCAS (int N, word **a[], word *e[], word *n[]) {
MCASDesc *d := new MCASDesc();

3 (d→N, d→a, d→e, d→n, d→status) := (N, a, e, n, UNDECIDED);
AddressSort(d); /* Memory locations must be sorted into address order. */

5 return MCASHelp(d);
}

7 bool MCASHelp (MCASDesc *d) {
word *v, desired := FAILED;

9 bool success;

/* PHASE 1: Attempt to acquire each location in turn. */
11 for (int i := 0; i < d→N; i++)

while (TRUE) {
13 CCAS(d→a[i], d→e[i], d, &d→status);

v := *d→a[i];
15 if (v = d) break; /* move on to next location */

if (¬IsMCASDesc(v)) goto decision point;
17 MCASHelp((MCASDesc *)v);

}
19 desired := SUCCESSFUL;

/* PHASE 2: No read-phase is used in MCAS */

21 decision point:
CAS(&d→status, UNDECIDED, desired);

23 /* PHASE 3: Release each location that we hold. */
success := (d→status = SUCCESSFUL);

25 for (int i := 0; i < d→N; i++)
CAS(d→a[i], d, success ? d→n[i] : d→e[i]);

27 return success:
}

Fig. 10. MCAS operation.

to the descriptor and consequently the single status update changes the logical state
of all of the locations. This is because the update is made by the first thread to
reach line 22 for the descriptor and so no threads can yet have reached lines 23-26
and have starting releasing the addresses.

The final phase then is to release the locations, replacing the references to the de-
scriptor with the new or old values according to whether the MCAS has succeeded.

5.4 Building conditional compare-and-swap

The MCAS implementation is completed by considering how to provide the CCAS
operation which is used for acquiring locations on behalf of a descriptor.

Figure 11 shows how CCAS can be implemented using CAS. It proceeds by in-
stalling a CCAS descriptor in the location to be updated (line 7). This ensures that
the location’s logical value is the expected value while the conditional location is
tested, so that a successful CCAS operation linearises when the conditional location
is read from. If the update location doesn’t contain the expected value then CCAS
fails (line 9); if it contains another CCAS descriptor then that operation is helped
to complete before retrying (line 10).

If the update location is successfully acquired, the conditional location is tested
(line 21). Depending on the contents of this location, the descriptor is either re-
placed with the new value, or with the original expected value (line 22). CAS is

ACM Journal Name, Vol. V, No. N, M 20YY.

22 · K. Fraser and T. Harris

1 typedef struct {
word *a, e, n, *cond;

3 } CCASDesc;

void CCAS (word *a, word e, word n, word *cond) {
5 CCASDesc *d := new CCASDesc();

(d→a, d→e, d→n, d→cond) := (a, e, n, cond);

7 while (¬CAS(d→a, d→e, d)) {
word v := *d→a;

9 if (¬IsCCASDesc(v)) return;
CCASHelp((CCASDesc *)v);

11 }
CCASHelp(d);

13 }
word CCASRead (word *a) {

15 word v;
for (v := *a; IsCCASDesc(v); v := *a)

17 CCASHelp((CCASDesc *)v);
return v;

19 }
void CCASHelp (CCASDesc *d) {

21 bool success := (*d→cond = 0);
CAS(d→a, d, success ? d→n : d→e);

23 }

Fig. 11. Conditional compare-&-swap (CCAS). CCASRead is used to read from locations which
may be subject to concurrent CCAS operations.

used so that this update is performed exactly once even when the CCAS operation
is helped to complete by other processes.

5.5 Discussion

There are a number of final points to consider in our design for MCAS. The first is
to observe that when committing an update to a set of N locations, and proceeding
without experiencing contention, the basic operation performs 3N+1 updates using
CAS: each of the N CCAS operations makes 2N updates in total, a further N CAS
are used releasing ownership and a single CAS is used to update the status field.
However, although this is more than a factor of three increase over updating the
locations directly, it is worth noting that the three batches of N updates all act
on the same locations: the cache lines holding those locations need only be fetched
once.

We did develop an alternative implementation of CCAS which uses an ordinary
write in place of its second CAS. This involves leaving the CCAS descriptor linked
in to the location being updated and recording the success or failure of the CCAS
within that descriptor. This 2N + 1 scheme is not a worthwhile improvement over
the 3N + 1 design: it writes to more distinct cache lines and it makes it difficult
to re-use CCAS descriptors in the way we describe in Section 8.1.4. However, it
may be useful if there are systems in which CAS operates substantially more slowly
than an ordinary write.

Moir explained how to build an obstruction-free 2N + 1 MCAS which follows the
same general structure as our lock-free 3N + 1 design [Moir 2002]. His design uses
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 23

a2

a1

200

100

cc1 a1: 100 −> 200

a2: 200 −> 100

Status: UNDECIDED

tx1

update

conditional

expected: 100

new

(a) CAS is used to try to install a pointer to the CCAS descriptor into the update location, in
this case replacing the expected value 100.

a2

a1

200 cc1 a1: 100 −> 200

a2: 200 −> 100

Status: UNDECIDED

tx1

update

conditional

expected: 100

new

(b) The conditional location is checked against 0 and the thread (or threads) acting on this
CCAS descriptor individually decide the outcome and use CAS to store the new value (if the

check succeeds) or the expected value (if the check fails).

a2

a1

200 cc1 a1: 100 −> 200

a2: 200 −> 100

Status: UNDECIDED

tx1

update

conditional

expected: 100

new

(c) Note that the one-shot use of descriptors means that once one thread has removed the
reference to the CCAS descriptor then any concurrent threads’ CAS operations attempting to do
so will fail: this is why there is no need for consensus between concurrent threads helping with a

CCAS.

Fig. 12. The steps involved in performing the first CCAS operation needed in Figure 9. In this
case the first location a1 is being updated to refer to MCAS descriptor tx1, conditional on a1
holding 100 and the descriptor being UNDECIDED.

CAS in place of CCAS to acquire ownership while still preserving the logical state
of the location being updated. The weaker progress guarantee makes this possible
by avoiding recursive helping: if t2 encounters t1 performing an MCAS then t2
causes t1’s operation to abort if it is still UNDECIDED. This avoids the need to
CCAS because only the thread initiating an MCAS can now update its status field
to SUCCESSFUL: there is no need to check it upon each acquisition.

6. WORD-BASED SOFTWARE TRANSACTIONAL MEMORY

We now turn to the word-based STM that we have developed. WSTM builds on the
MCAS implementation from Section 5 by removing the requirement that space be
reserved in each location in the heap and by presenting an alternative interface in
which the WSTM implementation is responsible for tracking the locations accessed.
Unfortunately, the cost of this is that the WSTM system is more complex although a

ACM Journal Name, Vol. V, No. N, M 20YY.

24 · K. Fraser and T. Harris

300a101

400a102

tx1

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: UNDECIDED

a2

a1

200

100

heap
Application Transaction

descriptors
Ownership
Records

version 21r2

r1

Fig. 13. The heap structure used in WSTM. The transaction set out in descriptor t1 is mid-
way through committing an update to locations a1 and a2 which will swap over their contents.
Locations a101 and a102 are examples of other locations which happen to map to the same
ownership records, but which are not part of the update.

careful implementation performs well in common cases. This complexity motivates
the straightforward OSTM system in Section 7.

6.1 Memory formats

Our WSTM implementation introduces two kinds of structure in addition to the
actual data structures that WSTM is being used to access.

The first data structure is a table of ownership records (orecs) which are used
in co-ordinating commit operations. An ownership function maps each address in
the heap to an associated orec. There need not be a one-to-one correspondence
between addresses and records – there could be one orec per object or, as in our
implementation, a fixed-size table of records to which addresses map by taking a
number of their significant low-order bits as a hash value.

Each orec holds either a version number or points to a current owner for the
addresses that associate with it. Each time a location in the application heap is
updated, the version number must be incremented. We assume for that version
numbers are never re-used: our implementation provides 31-bits of storage and the
numbers are incremented only when an update is successfully committed to an orec.

The second kind of data structure are the transaction descriptors which perform
an analogous role to MCAS descriptors in setting out the current status of each
active transaction and the accesses that it has made to the heap. Each access is
described by a transaction entry specifying the address in question ai, the old and
new values to be held there (oi, ni) and the old and new version numbers of those
values (voi, vni). As usual, the status field indicates that the commit operation is
either UNDECIDED, READ-CHECK, SUCCESSFUL or FAILED.

A descriptor is well formed if for each ownership record it either (i) contains at
most one entry associated with that orec, or (ii) contains multiple entries associated
with that orec, but the old version number is the same in all of them and the new
version number is the same in all of them.

Figure 13 contains an example of these two structures which we shall use for
illustration. Within the transaction descriptors we indicate memory accesses using
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 25

the notation ai:(oi, voi)→ (ni, vni) to mean that address ai is being updated from
logical value oi at version number voi to logical value ni at version number vni.
For a read-only access, oi = ni and voi = vni. For an update, vni = voi + 1.

6.2 Logical contents

As with MCAS, we proceed by defining the logical state of a location in the heap.
However, we now consider this to be the pair of the value conceptually held at that
address and the version number associated with that value being there. We define
the logical state by a disjunction of three cases. In the first case the orec contains
a version number:

LS1 : The version number is taken from the orec and the value is held directly in
the application heap. For instance, in Figure 13, the logical state of a2 is
(200, 21).

In the second and third cases the orec refers to a descriptor:

LS2 : If the descriptor contains an entry for the address then that entry gives the
logical state. For instance, the logical state of a1 is (100, 15) because the
descriptor shown has not yet committed and it holds an entry updating a1
from (100,15) to (200,16).

LS3 : If the descriptor does not contain an entry for the address, then the de-
scriptor is searched for entries about other addresses which map to the
same orec as the requested address. The value is taken from the applica-
tion heap and the version is taken from the entry; the new version number
if the transaction is SUCCESSFUL and the old version number otherwise.
The ‘well formed’ property ensures that this is uniquely determined. For
instance, the logical state of a101 is (300, 15) taking old version 15 from
the entry for a1.

At run time, the logical contents of an address can be determined from a con-
sistent snapshot of the locations on which its value depends: the address itself, its
orec, the status of an owning descriptor (if any) and information from entries in
that descriptor.

Fortunately, the descriptor-management properties in Section 4.1 mean that a
general-purpose snapshot algorithm is not necessary here and we can directly com-
pute the logical state by reading locations as described in the three cases LS1..LS3.
The non-re-use of descriptors and version numbers lets us employ a simple re-
read-then-check design, re-computing the logical state if the orec’s value changes
part-way through:

1 do {
orec := orec of (addr);

3 <directly compute logical state based on orec>

} while (orec of (addr) 6= orec);

For LS1 the value is read from the application heap – it cannot have changed if
the orec’s contents did not. For LS2 and LS3, the locations accessed in descriptor
entries relating to an orec are constant once the pointer is installed as that record’s
owner. The only other location involved – the descriptor’s status – can change

ACM Journal Name, Vol. V, No. N, M 20YY.

26 · K. Fraser and T. Harris

exactly once to SUCCESSFUL or FAILED. The snapshot is consistent with the time
when the status is read in the last execution of line 3.

If the descriptor is observed in a READ-CHECK state then, as discussed in Sec-
tion 4.3, the operation specified in the descriptor is helped to reach its decision
point whereupon the logical contents can be correctly determined. We consider
how helping can be implemented along with contended commit operations in Sec-
tion 6.4.

Given the ability to determine the logical contents of the location, the WSTM-
ValidateTransaction, WSTMRead and WSTMWrite operations can be implemented
directly:

—WSTMValidateTransaction proceeds by checking the logical contents of all of the
entries in the current transaction’s descriptor: if any does not match the expected
logical contents then the transaction could not commit and is consequently in-
valid.

—WSTMRead is implemented by checking for an existing entry relating to the lo-
cation and returning ni if such an entry is found. Otherwise the logical state
is read by the re-read-then-check design and a new entry is added to the trans-
action record with this state recorded as (oi, voi). When initialising (ni, vni) it
is important to ensure that the descriptor remains well formed – the descriptor
may contain existing entries relating to the same orec but which were added be-
fore the orec was updated by another transaction. If the descriptor would stop
being well formed then it must be marked as FAILED. Otherwise, if there are no
existing updates, (ni, vni) is initialised to (oi, voi) and, if there are updates, it is
initialised to (oi, voi + 1).

—WSTMWrite proceeds by performing a read on the location, setting the new value
in the transaction entry to be the value being written and setting the new version
number vni = voi + 1.

6.3 Uncontended commit operations

An uncontended WSTM commit operation follows the design method in Section 4.
In outline, orecs ordinarily hold version numbers, as r1 and r2 do in Figure 14.
An orec only refers to a descriptor when that transaction is attempting to commit
– until WSTMCommitTransaction is invoked the transaction execution is private,
building up a series of entries in the descriptor which set out the locations that it
has accessed as in Figure 14(a).

During the first commit phase, the orecs for which ¬(vni = voi) are sorted and
CAS is used to attempt to replace the expected version number in the orec with
a reference to the transaction descriptor. This preserves the logical state of the
addresses in the descriptor (changing them from LS1 to LS2) and the logical state
of other locations which are associated with the same orecs (changing them from LS1
to LS3). Figure 14(b-c) shows these steps in our example of an uncontended commit
operation. We defer, for the moment, what happens in a contended operation when
one of these CAS invocations fails because it encounters a reference to another
transaction descriptor.

If all of the orecs are acquired successfully then CAS is used to mark the descriptor
as READ-CHECK; otherwise it is marked as FAILED. Read-checking proceeds as with
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 27

Application heap Ownership records Transaction descriptor

a2

r1a1

200

100

r2 version 21

tx1
version 15

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: UNDECIDED

(a) The transaction executes in private until it attempts to commit.

a2

r1a1

200

100

r2 version 21

tx1

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

version 15 Status: UNDECIDED

(b) CAS is used to acquire ownership record r1 replacing the expected version number with a
pointer to the transaction descriptor.

a2

r1a1

200

100

r2

tx1

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)
version 21

Status: UNDECIDED

(c) Similarly, CAS is used to acquire ownership record r2.

a2

r1a1

200

100

r2

tx1

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: UNDECIDED

(d) CAS is used to set the status to SUCCESSFUL.

a2

r1a1

r2

tx1
200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: SUCCESSFUL

(e) The updates are written back to the heap.

a2

r1a1

r2

tx1
200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: SUCCESSFUL

(f) Ownership is released on r1, installing the new version numbers.

a2

r1a1

r2

tx1
200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

version 16 Status: SUCCESSFUL

(g) Similarly, ownership is released on r2.

Fig. 14. An uncontended commit swapping the contents of a1 and a2, showing where CAS is to
be performed at each step.

ACM Journal Name, Vol. V, No. N, M 20YY.

28 · K. Fraser and T. Harris

validation: the logical contents of each orec associated with a read-only entry are
determined and, if any does not match, the descriptor is marked as FAILED.

If the acquisition phase and the read-check phase have succeeded then CAS is
used to mark the descriptor as SUCCESSFUL. Note that this decision point when
the status field is updated has the effect of atomically updating the logical state
of the locations accessed in the transaction (under LS2) and updating the version
number, but not the logical value, of other locations outside the transaction (under
LS3). Figure 14(d) shows this step.

The next stage, for successful transactions, is to write any updates made by the
transaction back to the heap. Since the transaction descriptor has acquired the
orecs involved the logical contents of the locations are taken from the descriptor
and so these crucial writes do not, in fact, update the logical state of the heap.
Figure 14(e) shows this step.

The final phase of the WSTM commit operation is to release ownership of those
orecs which were acquired successfully. This means proceeding through these orecs
replacing the references to the transaction descriptor with the new version number
(for successful transactions) and the old version number (for failed ones). Fig-
ure 14(f-g) shows this final step.

6.4 Contended commit operations

Designing a contention resolution strategy which is non-blocking is more difficult
with WSTM then with MCAS. This is because, with MCAS, it was possible to deal
with contention by having the second thread that attempted to acquire a resource
resolve the situation by helping the first thread complete its work; this was the
purpose of the MCASHelp function in Figure 8.

The problem with WSTM lies in helping commit operations which are in the
process of writing updates to the heap – that is, leading up to Figure 14(e). These
updates are made directly by ordinary write operations and so, even if one thread
performs these updates on behalf of another, it is unsafe to release ownership of the
orecs on its behalf because the first thread may subsequently perform the updates
when it is next scheduled.

The approach we take, if non-blocking commit operations are required, is to
ensure that an orec does not return to holding a version number until it is certain
that no threads are in the process of writing updates to heap locations that it
controls. If a thread committing one transaction, say t2 performing tx2, encounters
an orec that has been acquired by another transaction, say tx1, then t2 performs
three steps:

—Firstly, it ensures that tx1 has reached its decision point. This is straightforward:
if tx1 is still UNDECIDED or READ-CHECK then it is aborted.

—Secondly, t2 builds a combined descriptor holding its own proposed updates from
tx2 along with those from tx1, selecting the old or new details from tx1 according
to whether it has succeeded or failed and installing those as both the old and new
details in the combined descriptor. Since we are linearising tx1 to occur before
tx2, the combined descriptor must be marked as FAILED if the version numbers
taken from tx1 are inconsistent with the old version numbers in tx2.

—Finally, we introduce a counter into each orec saying how many transactions are
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 29

in the process of making updates to the locations it manages. This allows t2 to
‘steal’ ownership of an orec held by tx1, incrementing the counter atomically with
updating the owner using a double-word-width CAS instruction (available on IA-
32 and SPARC systems). When releasing ownership, the counter is decremented,
either leaving the owner unchanged (if the counter will remain above zero), or
restoring the version number (if the counter becomes zero). If a thread discovers
that ownership has been stolen from it (because it sees a different descriptor in
the orec when it reaches its release phase) then it re-does the updates made by
the new owner, in order to ensure that the final value written before releasing
ownership if that of the most recent transaction.

This design gives obstruction-free behaviour but, in theory, has many undesir-
able properties: (i) if a thread is not scheduled for a long time then any orecs it
was holding cannot be released, (ii) the merging of descriptors means that if it is
common for orecs to be stolen then the size of an individual transaction descriptor
is bounded only by the heap size and (iii) the need to use a double-word-width
CAS limits the practicality of the algorithm because not every CPU provides it.

We have a further scheme which obtains many of the benefits of non-blocking
behaviour but relies on operating system support. In this scheme, if a thread t2
committing a transaction tx2 encounters an orec held by t1 which is committing tx1
then t2 proceeds to release any orecs it already holds, it then acquires a process-
wide ‘suspension lock’, suspends t1, updates the program counter of the suspended
thread to be just after the commit operation, ensures tx1’s descriptor has reached
its decision point, updates the heap if necessary, releases the suspension lock and
then resumes t1. This relies on operating system support to prevent preemption
while holding the lock and to implement the control interfaces for displacing the
execution of t1 – on Solaris UNIX the former can be hinted using schedctl and the
latter is possible through control files under /proc.

This suspension scheme is effectively a rather direct and heavyweight way for t2
to help t1 but, when combined with the simple approach of t2 briefly spinning for t1
to complete its operation this code path is rarely executed. Similar techniques have
been used in implementing fast locks [Burrows 2003] and memory allocators [Dice
and Garthwaite 2002]. Bershad suggested using scheduler support to implement
CAS before it was commonly available in hardware [Bershad 1991]. However, his
scheme allowed only one thread to perform a CAS operation at any time, precluding
disjoint-access parallelism.

We consider both the complicated obstruction-free helping scheme and the suspension-
based one in our evaluation in Section 8. As these results show the fact that the
suspension path is cumbersome is of limited concern because it is rarely executed
when contention management is effective. Indeed, by removing the need for coun-
ters in orecs, it simplifies the implementation of uncontended execution paths.

6.5 Discussion

Although we do not present them here in detail, there are a number of extensions to
the WSTM interface which add to the range of settings in which it can be used. The
first of these is a WSTMDiscardUpdate operation which takes an address and acts as
a hint that the WSTM implementation is permitted (but not required) to discard

ACM Journal Name, Vol. V, No. N, M 20YY.

30 · K. Fraser and T. Harris

any updates made to that address in the current transaction. This can simplify
the implementation of some data structures in which shared ‘write-only’ locations
exist. For instance, in the red-black trees we use in Section 8, the implementation
of rotations within the trees is made easier if references to dummy nodes are used in
place of NULL pointers. If a single dummy node is used then updates to its parent
pointer produce contention between logically non-conflicting transactions: in this
case we can either use separate nodes or use WSTMDiscardUpdate on the dummy
node’s parent pointer.

The second extension is to introduce a mechanism for controlled blocking. This
allows WSTM to be used in place of condition variables as well as in place of mutual
exclusion locks. We discuss this WSTMWait operation more fully in relation to
language-level support for transactions [Harris and Fraser 2003] but, in outline,
it is invoked in place of WSTMCommitTransaction and blocks the caller until an
update is committed to one of the locations which the transaction has read from.
This allows a thread to wait for a condition based on the contents of multiple
locations by starting a transaction, reading from those locations, evaluating the
condition and then committing the transaction (if the condition is already TRUE)
or calling WSTMWait before restarting the transaction (if the condition is FALSE).

7. OBJECT-BASED SOFTWARE TRANSACTIONAL MEMORY

We now turn to the third of our abstractions: OSTM. Following several previous
transactional memory designs [Moir 1997; Herlihy et al. 2003], this groups memory
locations into contiguous blocks, or objects, which act as the unit of concurrency and
update. Rather than containing pointers, data structures contain opaque OSTM
handles which may be converted to directly-usable machine pointers by opening
them as part of a transaction. Each object that is opened during a transaction is
remembered as a consistency assumption to be checked before closing the object
during the commit phase.

7.1 Memory formats

We begin this section by describing the memory layout when no transactions are in
progress. We then describe how the OSTM implementation tracks the objects that
a transaction opens for reading and writing and how, as with WSTM, transaction
descriptors are used during commit operations.

The current contents of an OSTM object are stored within a data block. As
with transaction descriptors, we assume for the moment that data blocks are not
re-used and so a pointer uniquely identifies a particular use of a particular block of
memory. Outside of a transaction context, shared references to an OSTM object
point to a word-sized object header. The OSTM handles introduced in Section 2.3
are implemented as pointers to object headers. Figure 15(a) shows an example
OSTM-based structure which might be used by the linked-list pseudocode described
in the introduction.

The state of incomplete transactions is encapsulated within a per-transaction
descriptor structure which indicates the current status of the transaction and store
lists of objects which have been opened in read-only mode and in read-write mode.
Each of these list entries holds the object reference and data-block pointer and,
for objects opened in read-write mode, a pointer to the thread-local shadow copy
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 31

2

nodelist head

3

node

Application structures

STM private structuresobject
header

object
header

(a) Example OSTM-based linked list structure used by pseudocode in Figure 4. List nodes are
chained together via object headers, which are private to the STM. References to object headers
are known as object references and must be converted to list-node references using OSTMOpen-
ForReading or OSTMOpenForWriting within the scope of a transaction.

3

node

2

node

object
header

object
header

list head

status UNDECIDED

read−write list

read−only list

Transaction descriptor

ne
xt

 o
bj

ec
t h

an
dl

e

ob
je

ct
 h

ea
de

r

ol
d

da
ta

 b
lo

ck

ne
w

 d
at

a
bl

oc
k

2

shadow copy

(b) Example of a transaction attempting to delete node 3 from the list introduced above. The
transaction has accessed one object (node 2) which it has opened for writing. The read-only list
is therefore empty, while the read-write list contains one object handle describing the modified
node 2.

Fig. 15. Memory formats used in the OSTM implementation.

of the data block. Figure 15(b) illustrates the use of transaction descriptors and
object handles by showing a transaction in the process of deleting a node from an
ordered linked list.

Ordinarily, object headers refer to the current version of the object’s data via a
pointer to the current data block. However, if a transaction is in the process of
committing an update to the object, then they can refer to the descriptor for the
owning transaction.

7.2 Logical contents

As with MCAS and WSTM, we proceed by defining the logical contents of an object.
However, the definition is more straightforward than with WSTM because (i) we
avoid the problem of locations which are not part of a transaction from becoming
owned which occurred because of the many-to-one relationship between heap words
and orecs, (ii) we do not need to consider version numbers as part of the logical
state: the references to data blocks serve this purpose instead.

There are two cases:

LS1 : If the object header refers to a data block then that block forms the object’s
ACM Journal Name, Vol. V, No. N, M 20YY.

32 · K. Fraser and T. Harris

logical contents.
LS2 : If the object header refers to a transaction descriptor then we take the

descriptor’s new value for the block (if it is SUCCESSFUL) and its old value
for the block if it is UNDECIDED or FAILED.

As usual we require threads encountering a READ-CHECK descriptor to help
advance it to its decision point at which point the objects involved have well-defined
logical contents.

7.3 Commit operations

A transaction’s commit operation follows the three-phase structure introduced in
Section 4.3 and subsequently used with MCAS and WSTM.

Acquire phase. The header of each object opened in read-write mode is acquired
using in some global total order (e.g. arithmetic ordering of object references)
by using CAS to replace the data-block pointer with a pointer to the transaction
descriptor.

Read-check phase. The header of each object opened in read-only mode is checked
against the value recorded in the descriptor.

Decision point. Success or failure is then indicated by updating the status field
of the transaction descriptor to indicate the final outcome.

Release phase. Finally, on success, each updated object has its data-block pointer
updated to reference the shadow copy. On failure each updated object has its data-
block restored to the old value in the transaction descriptor.

Figure 16 presents pseudocode for the OSTMOpenForWriting and OSTMCommit-
Transaction operations. Both operations use obj read to find the most recent data
block for a given object reference; we therefore describe this sub-operation first. In
most circumstances the latest data-block reference can be returned directly from
the object header (lines 6 and 17). If the object is currently owned by a committing
transaction then the correct reference is found by searching the owner’s read-write
list (line 9) and selecting the old or new reference based on the owner’s current sta-
tus (line 15). If the owner is in its read phase then it must be helped to completion
or aborted, depending on the status of the transaction that invoked its obj read and
its ordering relative to the owner (lines 10–14).

OSTMOpenForWriting proceeds by checking whether the object is already open;
if so, the existing shadow copy is returned (lines 20–21). If the object is present
on the read-only list then the matching handle is removed (line 23). If the object
is present on neither list then a new object handle allocated and initialised (lines
24–25). A shadow copy of the data block is made (line 28) and the object handle
is inserted into the read-write list (line 29).

OSTMCommitTransaction itself is divided into three phases. The first phase at-
tempts to acquire each object in the read-write list (lines 35–40). If a more recent
data-block reference is found then the transaction is failed (line 38). If the object
is owned by another transaction then the obstruction is helped to completion (line
39). The second phase checks that each object in the read-only list has not been
updated since it was opened (lines 42–43). If all objects were successfully acquired
or checked then the transaction will attempt to commit successfully (lines 46–47).
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 33

1 typedef struct { t *data; } ostm handle<t*>;
typedef struct { ostm handle<t*> *obj; t *old, *new; } obj entry<t*>;

3 typedef struct { word status;
obj entry list read list, write list; } ostm transaction;

5 t *obj read (ostm transaction *tx, ostm handle<t*> *o) {
t *data := o→data;

7 if (IsOSTMDesc(data)) {
ostm transaction *other := (ostm transaction *)data;

9 obj entry<t*> *hnd := search(o, other→write list);
if (other→status = READ CHECK)

11 if ((tx→status 6= READ CHECK) ∨ (t > other))
commit transaction(other); // Help other

13 else
CAS(&other→status, READ CHECK, FAILED); // Abort other

15 data := (other→status = SUCCESSFUL) ? hnd→new : hnd→old;
}

17 return data;
}

19 t *OSTMOpenForWriting (ostm transaction *tx, ostm handle<t*> *o) {
obj entry<t*> *hnd := search(o, tx→write list);

21 if (hnd 6= NULL) return hnd→new;

if ((hnd := search(o, tx→read list)) 6= NULL) {
23 remove(o, tx→read list); // Upgrading to write

} else {
25 hnd := new obj entry<t*>();

(hnd→obj, hnd→old) := (o, obj read(t, o));
27 }

hnd→new := clone(hnd→old);
29 insert(hnd, tx→write list);

return hnd→new;
31 }

bool commit transaction (ostm transaction *tx) {
33 word data, status, desired status := FAILED;

obj entry *hnd, *ohnd;

35 for (hnd in tx→write list) /* Acquire phase */
while (¬CAS(&hnd→obj→data, hnd→old, t)) {

37 if ((data := hnd→obj→data) = t) break;
if (¬IsOSTMDesc(data)) goto decision point;

39 commit transaction((ostm transaction *)data);
}

41 CAS(&tx→status, UNDECIDED, READ CHECK);
for (hnd in tx→read list) /* Read phase */

43 if ((data := obj read(t, hnd→obj)) 6= hnd→old) goto decision point;

desired status := SUCCESSFUL;
45 decision point:

while (((status := tx→status) 6= FAILED) ∧ (status 6= SUCCESSFUL))
47 CAS(&tx→status, status, desired status);

for (hnd in tx→write list) /* Release phase */
49 CAS(&hnd→obj→data, t, status = SUCCESSFUL ? hnd→new : hnd→old);

return (status = SUCCESSFUL);
51 }

Fig. 16. OSTM’s OSTMOpenForWriting and OSTMCommitTransaction interface calls. Algorithms
for read and read-write lists are not given here. Instead, search, insert, remove and for-in iterator
operations are assumed to exist, e.g. acting on linked lists of obj entry structures.

ACM Journal Name, Vol. V, No. N, M 20YY.

34 · K. Fraser and T. Harris

Finally, each acquired object is released (lines 48–49); the data-block reference is
returned to its previous value if the transaction failed, otherwise it is updated to
its new value.

7.4 Discussion

Our lock-free OSTM was developed concurrently with an obstruction-free design by
Herlihy et al [Herlihy et al. 2003]. We include both in our experimental evaluation.
The two designs are similar in the use of object handles as a point of indirection
and the use of transaction descriptors to publish the updates that a transaction
proposes to make.

The key difference lies in how transactions proceed before they attempt to com-
mit. In our scheme transactions operate entirely in private and so descriptors are
only revealed when a transaction is ready to commit. In Herlihy et al’s design each
OSTMOpen operation causes the transaction to acquire the object in question. This
allows a wider range of contention management strategies because contention is de-
tected earlier than with our scheme. However, it means that their OSTM cannot be
made lock-free: in our scheme threads can help one another’s commit operations,
but in their scheme it would be necessary for threads to help one another’s entire
transactions.

It is interesting to note that, unlike MCAS, we cannot obtain useful simplifi-
cations of our OSTM implementation by moving from lock freedom to obstruc-
tion freedom. This is because the data pointers in OSTM object handles serve to
uniquely identify a given object-state and so lock-freedom can be obtained without
needing CCAS to avoid A-B-A problems when acquiring ownership.

8. EVALUATION

There is a considerable gap between the pseudocode designs presented for MCAS,
WSTM and OSTM and a useful implementation of those algorithms on which to
base our evaluation. In this section we highlight a number of these areas elided in
the pseudocode and then assess the practical performance of our implementations
by using them to build concurrent skip-lists and red-black trees.

8.1 Implementation concerns

We consider four particular implementation problems: supporting nested transac-
tions for composition (Section 8.1.1), detecting if a thread is executing a transaction
that cannot commit (Section 8.1.2), distinguishing descriptors from application data
(Section 8.1.3) and managing the memory within which descriptors are contained
(Section 8.1.4).

8.1.1 Nested transactions. In order to allow composition of STM-based opera-
tions we introduce limited support for nested transactions. This takes the simple
form of counting the number of StartTransaction invocations that are outstand-
ing in the current thread and only performing an actual CommitTransaction when
the count is returned to zero. This means that it is impossible to abort an inner
transaction without aborting its enclosing transactions.

An alternative implementation would be to use separate descriptors for enclosed
transactions and, upon commit, to merge these into the descriptors for the next
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 35

transaction out. This would allow an enclosed transaction to be aborted and retried
without requiring that all of the enclosing transactions be aborted.

8.1.2 Transaction validation. A non-obvious but in practice rather serious com-
plication arises when dealing with transactions which become inconsistent at some
point during their execution – for instance a transaction that has read from a lo-
cation to which an update has subsequently been committed. In practice there
are two ways in which inconsistent data can prevent progress: the application may
crash, or it may loop indefinitely and never try to commit. The same problem, of
course, occurs when programming with MCAS because that API gives no guarantee
that a series of MCASRead operations provides an atomic snapshot of the heap.

An application which could suffer from these problems can be modified to vali-
date the current transaction in appropriate places. This requires validation checks
to be inserted immediately before critical operations which may cause a crash, and
inside loops for which termination depends on transactional data. A failed valida-
tion causes the application to abort the current transaction and reattempt it, thus
averting program failure or unbounded looping.

Our experience when implementing red-black trees over WSTM and OSTM was
that determining where to place explicit validation checks is tedious. We further
observed that validation checks were only required in two types of situation: (i) to
avoid a memory-protection fault, usually due to dereferencing a NULL pointer; and
(ii) to prevent indefinite execution of a loop. Furthermore, we observed that each
loop in the data structures implementation contained at least one STM operation.

Consequently, we adopted two techniques to automate the placement of lightweight
validation in these settings. Firstly, when a transaction is started WSTM and
OSTM save enough state to automatically return control to that point if the trans-
action becomes invalid: in a C/UNIX environment this can be done portably using
the POSIX setjmp and longjmp routines. We install a signal handler which catches
memory-protection faults and validates the in-progress transaction, if any. If the
validation fails then the transaction is restarted.

Secondly, each STM operation probabilistically checks the consistency of one en-
try in the descriptor of the in-progress transaction. This avoids unbounded looping
because the inconsistency will eventually be detected and the transaction auto-
matically restarted. The probability of validation can be reduced to gain faster
execution of STM operations at the expense of slower detection of inconsistencies.

An alternative implementation would be to perform full validation on every
WSTMRead and OSTMOpen operation, thereby ensuring that the values seen within
a transaction represent a mutually-consistent snapshot of part of the heap. This is
effectively the approach taken by Herlihy et al’s obstruction-free STM and leads to
the need to either make reads visible to other threads (making read parallelism dif-
ficult in a streamlined implementation) or explicit re-validation (leading to O(n2)
behaviour when a transaction opens n objects in turn).

8.1.3 Descriptor identification. To allow implementation of the IsMCASDesc,
IsCCASDesc, IsWSTMDesc and IsOSTMDesc predicates from Sections 5–7, there
needs to be a way to distinguish pointers to descriptors from other valid memory
values.

ACM Journal Name, Vol. V, No. N, M 20YY.

36 · K. Fraser and T. Harris

We do this by reserving the two low-order bits in each pointer that may refer
to a descriptor. This limits CCAS and MCAS to only operate on pointer-typed
locations, as dynamically distinguishing a descriptor reference from an integer with
the same representation is not generally possible. However, OSTM descriptors are
only ever installed in place of data-block pointers, so OSTM trivially complies with
this restriction. Similarly, WSTM descriptor-pointers are only installed in orecs in
place of version numbers: we use even values to indicate descriptor pointers and
odd values to indicate version numbers.

Of course, other implementation schemes are possible, for instance using run-time
type information or placing descriptors in distinct memory pools.

8.1.4 Reclamation of dynamically-allocated memory. Note that we are actually
faced with two separate memory management problems: how to manage the mem-
ory within which descriptors are held and how to manage the memory within which
application data structures are held. The latter problem has been subject to ex-
tensive recent work, such as SMR [Michael 2002b] and pass-the-buck [Herlihy et al.
2002], and either of those schemes (or others) can be used by the application.

That leaves the former problem of managing descriptors: so far we have assumed
that they are reclaimed by garbage collection and we have benefited from this as-
sumption by being able to avoid A-B-A problems that would otherwise be caused by
re-use. Although general solutions such as SMR and pass-the-buck remain applica-
ble, we can benefit from using a separate scheme because of the different workload.

This is possible because disjoint-access parallelism means that although descrip-
tors are published in shared memory, they often remain thread-local in practice.
When that is the case then they can be re-used directly. We achieve this direct
re-use with simple reference counting, placing a count in each MCAS, WSTM and
OSTM descriptor and updating this to count the number of threads which may
have active references to the descriptor. Michael and Scott’s method is used to
determine when reuse is safe [Michael and Scott 1995].

The suspension based WSTM commit operation in Section 6.4 interacts particu-
larly well with reference counting. If contention does occur and t2 encounters t1’s
descriptor tx1 then t2 completes the operations in tx1 while t1 is suspended and t1
is only resumed after displacing it out of the commit function. This means that at
most one thread is using a given descriptor in a commit operation at any time.

We manage CCAS descriptors by embedding a pool of them within each MCAS
descriptor. In fact, embedding a small number of CCAS descriptors within each
MCAS descriptor is sufficient because each one can be immediately reused as long
as it is only introduced to any particular memory location at most once. This
restriction is satisfied by allocating a single CCAS descriptor to each thread that
participates in an MCAS operation; each thread then reuses its descriptor for each
of the CCAS sub-operations that it executes. Unless contention is very high it
is unlikely that recursive helping will occur often, and so the average number of
threads participating in a single MCAS operation will be very small.

If excessive helping does ever exhaust the embedded cache of CCAS descriptors
then further allocation requests must be satisfied by dynamic allocation. These
dynamically-allocated descriptors are managed by the same reference-counting mech-
anism as ordinary descriptors.
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 37

The same storage method is used for the per-transaction object lists maintained
by OSTM. Each transaction descriptor contains a pool of embedded entries that
are sequentially allocated as required. If a transaction opens a very large number
of objects then further descriptors are allocated and chained together to extend the
node pool.

8.2 Performance evaluation

We evaluate the performance of the three abstractions for concurrent programming
without locks by using them to build implementations of shared set data structures
and then comparing the performance of these implementations against a range of
lock-based designs. All experiments were run on a Sun Fire 15K server populated
with 106 UltraSPARC III CPUs, each running at 1.2GHz. The server comprises
18 CPU/memory boards, each of which contains four CPUs and several gigabytes
of memory. The boards are plugged into a backplane that permits communication
via a high-speed crossbar interconnect. A further 34 CPUs reside on 17 smaller
CPU-only boards.

Each experiment is specified by three adjustable parameters:

S — The search structure that is being tested
P — The number of parallel threads accessing the set
K — The average number of unique key values in the set

The benchmark program begins by creating P threads and an initial set, imple-
mented by S, containing the keys 0, 2, 4, . . . , 2K. All threads then enter a tight
loop which they execute for 5 wall-clock seconds. On each iteration they randomly
select whether to execute a lookup (p = 75%), update (p = 12.5%), or remove
(p = 12.5%). This distribution is chosen because reads dominate writes in many
observed real workloads; it is also very similar to the distributions used in previous
evaluations of parallel algorithms [Mellor-Crummey and Scott 1991b; Shalev and
Shavit 2003]. When 5 seconds have elapsed, each thread records its total number
of completed operations. These totals are summed and used to calculate the result
of the experiment: the mean number of CPU-microseconds required to execute a
random operation.

A timed duration of 5 seconds is sufficient to amortise the overheads associated
with warming each CPU’s data caches, and starting and stopping the benchmark
loop. We confirmed that doubling the execution time to 10 seconds does not mea-
surably affect the final result. We plot results showing the median of 5 benchmark
runs with error bars indicating the minimum and maximum results achieved.

In addition to gathering performance figures, our test harness can log the inputs,
results and invocation and response timestamps for each operation. We used an
off-line checked to ensure that these observations are linearizable. Although this
problem is generally NP-complete [Wing and Gong 1993], a greedy algorithm which
executes a depth-first search to determine a satisfactory ordering for the invocations
works well in practice [Fraser 2003]. This was invaluable for finding implementation
errors such as missing memory-ordering barriers, even when we were sure of the
algorithmic correctness of the designs.

We compare 14 different set implementations: 6 based on red-black trees and 8
based on skip lists. Many of these are lock-based and were created for the purpose of

ACM Journal Name, Vol. V, No. N, M 20YY.

38 · K. Fraser and T. Harris

running these tests to provide as strong contenders as possible; we have made their
source code publicly available for inspection and Fraser describes the contenders
in more detail as part of his PhD dissertation [Fraser 2003]. Fraser also considers
general binary search trees and develops a range of non-blocking and lock-based
designs.

Where needed by lock-based algorithms we use Mellor-Crummey and Scott’s
(MCS) scalable queue-based spinlocks which avoid unnecessary cache-line transfers
between CPUs that are spinning on the same lock [Mellor-Crummey and Scott
1991a]. Although seemingly complex, the MCS operations are highly competitive
even when the lock is not contended; an uncontended lock is acquired or released
with a single read-modify-write access. Furthermore, contended MCS locks create
far less memory traffic than standard test-and-set or test-and-test-and-set locks.

Where multi-reader locks are required we use another queue-based design by the
same authors which allows adjacently-queued readers to enter their critical regions
simultaneously when the first of the sequence reaches the head of the queue [Mellor-
Crummey and Scott 1991b].

In summary the 14 set implementations considered here are:

(1) Skip lists with per-pointer locks. Pugh describes a highly-concurrent skip list
implementation which uses per-pointer mutual-exclusion locks [Pugh 1990]. Any
update to a pointer must be protected by its lock. Deleted nodes have their pointers
updated to link backwards thus ensuring that a search correctly backtracks if it
traverses into a defunct node.

(2) Skip lists with per-node locks. Although per-pointer locking successfully lim-
its the possibility of conflicts, the overhead of acquiring and releasing so many locks
is an important consideration. We therefore include Pugh’s design using per-node
locks. The operations are identical to those for per-pointer locks, except that a
node’s lock is acquired before it is first updated and continuously held until after
the final update to the node. Although this slightly increases the possibility of
conflict between threads, in many cases this is more than repaid by the reduced
locking overheads.

(3) Skip lists built directly from CAS. The direct-CAS design performs compos-
ite update operations using a sequence of individual CAS instructions, with no need
for dynamically-allocated descriptors. This means that great care is needed to en-
sure that updates occur atomically and consistently. In outline, list membership is
defined according to presence in the lowest level. Insertion or deletion is performed
on each level in turn as an independent linked list, using Harris’s marking tech-
nique [Harris 2001] to logically delete a node from each level of the skip list [Fraser
2003]. This implementation is used to show the performance gains that are possi-
ble using an intricate non-blocking system when compared with a one built from
MCAS, WSTM or OSTM. Of course, the STM-based implementations do allow
composability whereas the CAS-based design does not.

(4) Skip lists built using MCAS. Insertions and deletions proceed by building up
batches of memory updates to make through a single MCAS invocation. As with
Pugh’s schemes, pointers within deleted nodes are reversed to aid concurrent searches.

(5-6) Skip lists built using WSTM. Skip lists can be built straightforwardly from
single-threaded code using WSTM. We consider two variants: a non-blocking WSTM
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 39

built using double-word-width compare and swap and a version using the suspen-
sion scheme described in Section 6.4.

(7-8) Skip lists built using OSTM. Skip lists can be built straightforwardly from
OSTM by representing each list node as a separate OSTM object. We consider
two variants: the lock-free OSTM scheme described in Section 7 and Herlihy et al’s
obstruction-free STM [Herlihy et al. 2003].

(9) Red-black trees with serialised writers. Unlike skip lists there has been little
practical work on parallelism in balanced trees. Our first design [Fraser 2003]
builds on Hanke’s [Hanke 1999] and uses lock-coupling when searching down the
tree, upgrading to a write mode when performing rebalancing (taking care to avoid
deadlock by upgrading in down-the-tree order). A global mutual-exclusion lock is
used to serialise concurrent writers.

(10) Red-black trees with concurrent writers. Our second scheme allows concur-
rent writing by decomposing tree operations into a series of local updates on tree
fragments [Fraser 2003]. It is similar to Hanke’s relaxed red-black tree in that it
decouples the steps of rebalancing the tree from the actual insertion or deletion of a
node [Hanke et al. 1997]. Although lock-based, the style of the design is reminiscent
of optimistic concurrency control because each local update is preceded by checking
part of the tree in private to identify the sets of locks needed, retrying this stage if
inconsistency is observed.

(11-12) Red-black trees built using WSTM. As with skip lists, red-black trees can
be built straightforwardly from single-threaded code using WSTM. However, there
is one caveat. In order to reduce the number of cases to consider during rotations,
and in common with standard designs, we use a black sentinel node in place of NULL
child pointers in the leaves of the tree. We use write discard to avoid updates to
this introducing contention when making needless updates to the sentinel’s parent
pointer2.

(13-14) Red-black trees built using OSTM. As with skip lists, each node is rep-
resented by a separate OSTM object, so nodes must be opened for the appropriate
type of access as the tree is traversed. Again, write discard is used on the sentinel
node.

We now consider our performance results under a series of scenarios. Section 8.2.1
looks at scalability under low contention. This shows the performance of our non-
blocking systems when they are running on machines with few CPUs, or when they
are being used carefully to reduce the likelihood that concurrent operations conflict.
Our second set of results, in Section 8.2.2, considers performance under increasing
levels of contention.

8.2.1 Scalability under low contention. The first set of results measure perfor-
mance when contention between concurrent operations is very low. Each experi-
ment runs with a mean of 219 keys in the set, which is sufficient to ensure that

2Herlihy et al’s OSTM cannot readily support write discard because only one thread may have
an OSTM object open for writing at a time. Their early release scheme applies only to read-only
accesses. To avoid contention on the sentinel node we augmented their STM with a mechanism
for registering objects with non-transactional semantics: such objects can be opened for writing
but the shadow copy remains thread private and is discarded on commit or abort.

ACM Journal Name, Vol. V, No. N, M 20YY.

40 · K. Fraser and T. Harris

parallel writers are extremely unlikely to update overlapping sections of the data
structure. A well-designed algorithm which provides disjoint-access parallelism will
avoid introducing contention between these logically non-conflicting operations.

Note that all the graphs in this section show a significant drop in performance
when parallelism increases beyond 5 to 10 threads. This is due to the architecture
of the underlying hardware: small benchmark runs execute within one or two CPU
‘quads’, each of which has its own on-board memory. Most or all memory reads
in small runs are therefore serviced from local memory which is considerably faster
than transferring cache lines across the switched inter-quad backplane.

Figure 17 shows the performance of each of the skip-list implementations. As ex-
pected, the STM-based implementations perform poorly compared with the other
lock-free schemes; this demonstrates that there are significant overheads associated
with the read and write operations (in WSTM) or with maintaining the lists of
opened objects, constructing shadow copies of updated objects (in OSTM). Addi-
tionally, access-validation is necessary in these cases, unlike lock-based schemes.

The lock-free CAS-based and MCAS-based designs perform extremely well be-
cause, unlike the STMs, they add only minor overheads on each memory access.
Interestingly, under low contention the MCAS-based design has almost identical
performance to the much more complicated CAS-based design — the extra complex-
ity of using hardware primitives directly is not always worthwhile. Both schemes
surpass the two lock-based designs, of which the finer-grained scheme is slower be-
cause of the costs associated with traversing and manipulating the larger number
of locks.

Figure 18, presenting results for red-black trees, gives the clearest indication of
the benefits of lock-free programming. Neither of the lock-based schemes scales
effectively with increasing parallelism; indeed, both OSTM and WSTM-based trees
out-perform the schemes using locking with only 2 concurrent threads. Of course,
the difficulty of designing effective lock-based trees motivated the development of
skip lists, so it is interesting to observe that a straightforward tree implementation,
layered over STM does scale well and often performs better than our skip list
implementations.

Surprisingly, the scheme that permits parallel updates performs hardly any better
than the much simpler and more conservative design. This is because the main per-
formance bottleneck in both schemes is contention when accessing the multi-reader
lock at the root of the tree. Although multiple readers can enter their critical region
simultaneously, there is significant contention for updating the shared synchronisa-
tion fields within the lock itself. Put simply, using a more permissive type of lock
(i.e., multi-reader) does not improve performance because the bottleneck is caused
by cache-line contention rather than lock contention.

In contrast, the STM schemes scale very well because transactional reads do
not cause potentially-conflicting memory writes in the underlying synchronisation
primitives. OSTM is considerably faster then Herlihy’s design, due to better cache
locality. Herlihy’s STM requires a triple-indirection when opening a transactional
object: thus three cache lines are accessed when reading a field within a previously-
unopened object. In contrast our scheme accesses two cache lines; more levels of
the tree fit inside each CPU’s caches and, when traversing levels that do not fit in
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 41

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Processors

WSTM (without suspension)
Herlihy-OSTM

WSTM (with suspension)
OSTM

Lock-based (per-pointer)
Lock-based (per-node)

MCAS
CAS-based

(b)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Processors

Herlihy-OSTM
WSTM (without suspension)

WSTM (with suspension)
OSTM

Lock-based (per-pointer)
Lock-based (per-node)

MCAS
CAS-based

Fig. 17. Graph (a) shows the performance of large skip lists (K = 219) as parallelism is increased
to 90 threads. Graph (b) is a ‘zoom’ of (a), showing the performance of up to 5 threads. As with
all our graphs, lines marked with boxes represent lock-based implementations, circles are OSTMs,
triangles are WSTMs and crosses are implementations built from MCAS or directly from CAS.
The ordering in the key reflects the ordering of the lines at the right-hand side of the graph: lower
lines are achieved by faster implementations.

ACM Journal Name, Vol. V, No. N, M 20YY.

42 · K. Fraser and T. Harris

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Processors

Lock-based (serialised writers)
Lock-based (concurrent writers)

WSTM (without suspension)
WSTM (with suspension)

Herlihy-OSTM
OSTM

(b)

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Processors

Lock-based (concurrent writers)
Lock-based (serialised writers)

Herlihy-OSTM
WSTM (without suspension)

WSTM (with suspension)
OSTM

Fig. 18. Graph (a) shows the performance of large red-black trees (K = 219) as parallelism is
increased to 90 threads. Graph (b) is a ‘zoom’ of (a), showing the performance of up to 5 threads.

the cache, 50% fewer lines must be fetched from main memory.

8.2.2 Performance under varying contention. The second set of results shows
how performance is affected by increasing contention — a particular concern for
non-blocking algorithms, which usually assume that conflicts are rare. This assump-
tion allows the use of optimistic techniques for concurrency control; when conflicts
do occur they are handled using a fairly heavyweight mechanism such as recursive
helping or interaction with the thread scheduler. Contrast this with using locks,
where an operation assumes the worst and ‘announces’ its intent before accessing
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 43

 0

 20

 40

 60

 80

 100

23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Mean set size

WSTM (without suspension)
Herlihy-OSTM

WSTM (with suspension)
OSTM

Lock-based (per-pointer)
Lock-based (per-node)

MCAS
CAS-based

Fig. 19. Effect of contention on concurrent skip lists (P = 90).

shared data: that approach introduces unnecessary overheads when contention is
low because fine-grained locking requires expensive juggling of acquire and release
invocations. The results here allow us to investigate whether these overheads pay
off as contention increases. All experiments are executed with 90 parallel threads
(P = 90).

Figure 19 shows the effect of contention on each of the skip-list implementations.
It indicates that there is sometimes a price for using high-level abstractions such
as MCAS. The poor performance of MCAS when contention is high is because
many operations must retry several times before they succeed: it is likely that
the data structure will have been modified before an update operation attempts
to make its modifications globally visible. In contrast, the carefully-implemented
CAS-based scheme attempts to do the minimal work necessary to update its ‘view’
when it observes a change to the data structure. This effort pays off under very
high contention; in these conditions the CAS-based design performs as well as per-
pointer locks. These results also demonstrate a particular weakness of locks: the
optimal granularity of locking depends on the level of contention. Here, per-pointer
locks are the best choice under very high contention, but they introduce unnecessary
overheads compared with per-node locks under moderate to low contention. Lock-
free techniques avoid the need to make this particular tradeoff. Finally, note that
the performance of each implementation drops slightly as the mean set size becomes
very large. This is because the time taken to search the skip list begins to dominate
the execution time.

Figure 20 presents results for red-black trees, and shows that locks are not always
the best choice when contention is high. Both lock-based schemes suffer contention
for cache lines at the root of the tree where most operations must acquire the multi-
reader lock. The OSTM and WSTM scheme using suspension perform well in all

ACM Journal Name, Vol. V, No. N, M 20YY.

44 · K. Fraser and T. Harris

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Mean set size

Lock-based (concurrent writers)
Lock-based (serialised writers)

WSTM (without suspension)
WSTM (with suspension)

Herlihy-OSTM
OSTM

Fig. 20. Effect of contention on concurrent red-black trees (P = 90).

cases, although conflicts still significantly affect performance.
Herlihy’s STM performs comparatively poorly under high contention when using

an initial contention-handling mechanism which introduces exponential backoff to
‘politely’ deal with conflicts; other schemes may work better [Scherer and Scott
2004]. Furthermore, using the basic contention manager, the execution times of
individual operations are very variable, which explains the performance ‘spike’ at
the left-hand side of the graph. This low and variable performance is caused by
sensitivity to the choice of backoff rate: our implementation uses the same values
as the original authors, but these were chosen for a Java-based implementation of
red-black trees and they do not discuss how to choose a more appropriate set of
values for different circumstances.

When using the suspension-based WSTM scheme from Section 6.4 configured so
that an obstructed thread would spin-wait up to 50µs we observed that suspension
was only attempted under the most highly contended workloads. For instance, with
90 CPUs performing skip-list operations no suspension was attempted above K =
25. With K = 23 just under 300 suspensions were attempted out of over 2 500 000
successful commits. This suggests that even the heavyweight implementation we
use for suspension, based on an interface intended for debuggers, is acceptable given
the extreme rarity of its use.

9. CONCLUSION

The results presented in this paper demonstrate that well-implemented non-blocking
algorithms can match or surpass the performance of state-of-the-art lock-based
designs in many situations. Thus, not only do these non-blocking abstractions
have many functional advantages compared with locks (such as freedom from dead-
lock and unfortunate scheduler interactions), but they can also be implemented on
ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 45

Run-time performance
Rank Ease of use Low contention High contention

1 STM CAS, MCAS CAS, W-locks
2 RW-locks —– —–
3 MCAS W-locks MCAS
4 W-locks STM STM
5 CAS RW-locks RW-locks

Fig. 21. Effectiveness of various methods for managing concurrency in parallel applications, ac-
cording to three criteria: ease of use for programmers, performance when operating within a
lightly-contended data structure, and performance within a highly-contended data structure. The
methods are ranked under each criterion, from best- to worst-performing.

modern multiprocessor systems with better performance than traditional lock-based
schemes.

Figure 21 presents a comparison of each of the synchronisation techniques that
we have discussed. The comparative rankings are based on observation of how easy
it was to design practical search structures using each technique, and the relative
performance results under varying levels of contention between concurrent update
operations. CAS, MCAS and STM represent the three lock-free techniques. RW-
locks represents data structures that require both read and write operations to
take locks: these will usually be implemented using multi-reader locks. W-locks
represents data structures that only use locks to synchronise write operations —
some other method, usually an optimistic scheme, is used to ensure that readers
are correctly synchronised with respect to concurrent updates.

In situations where ease of use is most important, STM and RW-locks are the
best choices because they both ensure that readers are synchronised with concurrent
updates: transactions or locking can be wrapped around a sequential implementa-
tion. STM is ranked above RW-locks because it avoids the need to consider issues
such as granularity of locking and the order in which locks should be acquired to
avoid deadlock. MCAS and W-locks have similar complexity: they both handle
synchronisation between concurrent updates but an out-of-band method may be
required to synchronise readers. Like STM, MCAS is ranked higher than W-locks
because it avoids implementation issues that pertain only to locks. CAS is by far
the trickiest abstraction to work with because some method must be devised to ef-
ficiently ‘tie together’ related updates to multiple memory locations; non-blocking
implementations of specific data structures remains a research topic [Harris 2001;
Shalev and Shavit 2003].

When access to a data structure is not commonly contended, CAS and MCAS
both perform very well. W-locks tend to perform slightly worse because of reduced
cache locality compared with lock-free techniques, and the overhead of juggling
locks when executing write operations. OSTM performs worse than CAS, MCAS
and W-locks because of transactional overheads and the need to double read object
headers to ensure that transactional reads are consistent during commit. WSTM
performs similarly to OSTM when the number of objects opened using OSTM is
comparable to the number of reads or writes performed using WSTM. RW-locks
generally perform worst of all, particularly for a data structure which has only
one point of entry: this root can easily become a performance bottleneck due to

ACM Journal Name, Vol. V, No. N, M 20YY.

46 · K. Fraser and T. Harris

concurrent updates to fields within its multi-reader lock.
Under high contention, CAS-based designs perform well if they have been care-

fully designed to do the least possible work when an inconsistency or conflict is
observed — however, this may require a very complicated algorithm. The extra
space and time overheads of W-locks pay off under very high contention: MCAS
performs considerably worse because memory locations are very likely to have been
updated before MCAS is even invoked. OSTM also suffers because it, like MCAS,
is an optimistic technique which detects conflicts after time has been spent exe-
cuting a potentially expensive operation. However, it will still perform better than
RW-locks in many cases because contention at the root of the data structure is still
the most significant performance bottleneck for this technique.

In conclusion, using the programming abstractions and implementations that we
have presented in this dissertation, it is now practical to deploy lock-free techniques,
with all their attendant advantages, in many real-world situations where lock-based
synchronisation would traditionally be the only viable option.

9.1 Future work

The work discusses in this paper leads to many directions for future exploration.
We have already made progress with some of these, most notably integrating trans-
actional memories into managed run-time environments and investigating the pro-
gramming language abstractions that can be provided as a consequence [Harris and
Fraser 2003; Harris 2004].

A further direction is the integration of software transactional memory with hard-
ware support of the kind originally conceived by Herlihy and Moss [1993] or recently
proposed by Rajwar and Goodman [2002]. These hardware schemes are attractive
for short-running transactions in which all of the accesses can be contained in what-
ever structures future hardware may provide. Conversely, software-based schemes
are attractive for longer running transactions when these limits are exceeded or
when blocking operations such as our WSTMWait are to be provided.

ACKNOWLEDGMENT

This work has been supported by donations from the Scalable Synchronization
Research Group at Sun Labs Massachusetts. The evaluation was carried out on the
Cambridge-Cranfield High Performance Computing Facility.

REFERENCES

Anderson, J. H. and Moir, M. 1995. Universal constructions for multi-object operations. In
Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing
(PODC ’95). 184–193.

Anderson, J. H., Ramamurthy, S., and Jain, R. 1997. Implementing wait-free objects on
priority-based systems. In Proceedings of the 16th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’97). 229–238.

Barnes, G. 1993. A method for implementing lock-free data structures. In Proceedings of the
5th Annual ACM Symposium on Parallel Algorithms and Architectures. 261–270.

Bershad, B. N. 1991. Practical considerations for non-blocking concurrent objects. Technical
Report CMU-CS-91-116, Carnegie Mellon University, School of Computer Science. Oct.

Burrows, M. 2003. How to implement unnecessary mutexes. In Computer Systems: Theory,
Technology and Applications. Springer-Verlag.

ACM Journal Name, Vol. V, No. N, M 20YY.

Concurrent Programming Without Locks · 47

Dice, D. and Garthwaite, A. 2002. Mostly lock-free malloc. In Proceedings of the third inter-
national symposium on Memory management. ACM Press, 163–174.

Fraser, K. 2003. Practical lock freedom. Ph.D. thesis, Computer Laboratory, University of
Cambridge.

Greenwald, M. 1999. Non-blocking synchronization and system design. Ph.D. thesis, Stanford
University. Also available as Technical Report STAN-CS-TR-99-1624, Stanford University,
Computer Science Department.

Greenwald, M. 2002. Two-handed emulation: How to build non-blocking implementations of
complex data structures using DCAS. In Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing (PODC ’02). 260–269.

Hanke, S. 1999. The performance of concurrent red-black tree algorithms. In Proceedings of
the 3rd Workshop on Algorithm Engineering. Lecture Notes in Computer Science, vol. 1668.
Springer-Verlag, 287–301.

Hanke, S., Ottmann, T., and Soisalon-Soininen, E. 1997. Relaxed balanced red-black trees.

In Proceedings of the 3rd Italian Conference on Algorithms and Complexity. Lecture Notes in
Computer Science, vol. 1203. Springer-Verlag, 193–204.

Harris, T. 2001. A pragmatic implementation of non-blocking linked lists. In Proceedings of the
15th International Symposium on Distributed Computing (DISC ’01). Springer-Verlag, 300–
314.

Harris, T. 2004. Exceptions and side-effects in atomic blocks. In Proceedings of the 2004 PODC
Workshop on Synchronization in Java Programs.

Harris, T. and Fraser, K. 2003. Language support for lightweight transactions. In Proceedings
of the 18th Annual ACM-SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA ’03). 388–402.

Harris, T., Fraser, K., and Pratt, I. 2002. A practical multi-word compare-and-swap oper-
ation. In Proceedings of the 16th International Symposium on Distributed Computing (DISC
’02). Springer-Verlag.

Hennessy, J. L. and Patterson, D. A. 2003. Computer Architecture – A Quantitative Approach,
3rd ed. Morgan Kaufmann Publishers, San Francisco, CA, USA.

Herlihy, M. 1993. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems 15, 5 (Nov.), 745–770.

Herlihy, M., Luchangco, V., and Moir, M. 2002. The repeat offender problem: A mechanism
for supporting dynamic-sized, lock-free data structures. In Proceedings of the 16th International
Symposium on Distributed Computing (DISC ’02). Springer-Verlag.

Herlihy, M., Luchangco, V., and Moir, M. 2003. Obstruction-free synchronization: Double-
ended queues as an example. In Proceedings of the 23rd IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE.

Herlihy, M., Luchangco, V., Moir, M., and Scherer, W. 2003. Software transactional memory
for dynamic-sized data structures. In Proceedings of the 22nd Annual ACM Symposium on
Principles of Distributed Computing (PODC ’03). 92–101.

Herlihy, M. and Moss, J. E. B. 1993. Transactional memory: Architectural support for lock-
free data structures. In Proceedings of the 20th Annual International Symposium on Computer
Architecture (ISCA ’93). ACM Press, 289–301.

Herlihy, M. and Wing, J. M. 1990. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12, 3 (July), 463–492.

Israeli, A. and Rappoport, L. 1994. Disjoint-access-parallel implementations of strong shared
memory primitives. In Proceedings of the 13nd Annual ACM Symposium on Principles of
Distributed Computing (PODC ’94). 151–160.

Jayanti, P. and Petrovic, S. 2003. Efficient and practical constructions of ll/sc variables. In
Proceedings of the twenty-second annual symposium on Principles of distributed computing.

ACM Press, 285–294.

Mellor-Crummey, J. and Scott, M. 1991a. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems 9, 1, 21–65.

ACM Journal Name, Vol. V, No. N, M 20YY.

48 · K. Fraser and T. Harris

Mellor-Crummey, J. and Scott, M. 1991b. Scalable reader-writer synchronization for shared-
memory multiprocessors. In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 106–113.

Michael, M. M. 2002a. High performance dynamic lock-free hash tables and list-based sets. In

Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures.
ACM Press, 73–82.

Michael, M. M. 2002b. Safe memory reclamation for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the 21st Annual ACM Symposium on Principles of Distributed

Computing (PODC ’02).

Michael, M. M. and Scott, M. 1995. Correction of a memory management method for lock-free

data structures. Tech. Rep. TR599, University of Rochester, Computer Science Department.

Dec.

Moir, M. 1997. Transparent support for wait-free transactions. In Distributed Algorithms, 11th
International Workshop. Lecture Notes in Computer Science, vol. 1320. Springer-Verlag, 305–

319.

Moir, M. 2002. Personal communication.

Pugh, W. 1990. Concurrent maintenance of skip lists. Technical Report CS-TR-2222, Department
of Computer Science, University of Maryland. June.

Rajwar, R. and Goodman, J. R. 2001. Speculative lock elision: Enabling highly concurrent
multithreaded execution. In Proceedings of the 34th Annual International Symposium on Mi-
croarchitecture. IEEE Computer Society TC-MICRO and ACM SIGMICRO, 294–305.

Rajwar, R. and Goodman, J. R. 2002. Transactional lock-free execution of lock-based programs.
ACM SIGPLAN Notices 37, 10 (Oct.), 5–17.

Scherer, III, W. N. and Scott, M. L. 2004. Contention management in dynamic software
transactional memory. In Proceedings of the 2004 PODC Workshop on Concurrency and
Synchronization in Java Programs.

Shalev, O. and Shavit, N. 2003. Split-ordered lists: Lock-free extensible hash tables. In Pro-
ceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing (PODC
’03). 102–111.

Shavit, N. and Touitou, D. 1995. Software transactional memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (PODC ’95). 204–213.

Turek, J., Shasha, D., and Prakash, S. 1992. Locking without blocking: Making lock-based
concurrent data structure algorithms nonblocking. In Proceedings of the 11th ACM Symposium
on Principles of Database Systems. 212–222.

Wing, J. M. and Gong, C. 1993. Testing and verifying concurrent objects. Journal of Parallel
and Distributed Computing 17, 1 (Jan.), 164–182.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, M 20YY.

