
Lock-Free Linked Lists Using Compare-and-SwapJohn D. ValoisRensselaer Polytechnic Institutevaloisj@cs.rpi.edu
AbstractLock-free data structures implement concurrent objects with-out the use of mutual exclusion. This approach can avoidperformance problems due to unpredictable delays whileprocesses are within critical sections. Although universalmethods are known that give lock-free data structures forany abstract data type, the overhead of these methods makesthem ine�cient when compared to conventional techniquesusing mutual exclusion, such as spin locks.We give lock-free data structures and algorithms for im-plementing a shared singly-linked list, allowing concurrenttraversal, insertion, and deletion by any number of pro-cesses. We also show how the basic data structure can beused as a building block for other lock-free data structures.Our algorithms use the single word Compare-and-Swapsynchronization primitive to implement the linked list di-rectly, avoiding the overhead of universal methods, and arethus a practical alternative to using spin locks.1 IntroductionA concurrent object is an abstract data type that permitsconcurrent operations that appear to be atomic. We canimplement a concurrent object as a data structure in sharedmemory and a set of algorithms that manipulate the datastructure using atomic synchronization primitives, such asRead, Write, Fetch&Add, and Compare&Swap. Careis required to synchronize concurrent processes so that thedata structure is not corrupted and so that operations returnthe correct results. The conventional way to do this is withmutual exclusion, guaranteeing exclusive access to a processmanipulating the data structure.Mutual exclusion is well understood; in particular, anumber of e�cient spin locking techniques have been de-veloped [3, 8, 20]. However, the delay of a process while ina critical section (for example, due to a page fault, multi-tasking preemption, memory access latency, etc.) forms abottleneck which can cause performance problems such asconvoying and priority inversion.Lock-free data structures implement concurrent objectswithout the use of mutual exclusion. Such data structuresmay be able to guarantee that some process will complete its

operation in a �nite amount of time, even if other processeshalt; in this case the data structure is non-blocking . If thedata structure can guarantee that every (non-faulty) processwill complete its operation in a �nite amount of time, thenit is wait-free.Although several universal methods are known for wait-free implementation of any arbitrary concurrent object, theyinvolve considerable overhead, making them impractical, es-pecially compared to spin locks. It is sometimes possible todevise lock-free data structures that implement a particu-lar concurrent object directly, without the use of universalmethods. Such techniques can o�er the bene�ts of lock-freesynchronization without sacri�cing e�ciency.We present algorithms and data structures that directlyimplement a non-blocking singly-linked list. To our knowl-edge, these are the �rst such algorithms to allow processesto arbitrarily traverse the linked list structure, inserting anddeleting nodes at any point in the list, using only the com-monly available Compare&Swap primitive1, and providingperformance competitive with spin locks.A linked list is also useful as a building block for otherconcurrent objects. We show how the lock-free linked listcan be used to build several non-blocking implementationsof a concurrent dictionary object.The rest of this paper is organized as follows: Section 2reviews related work, and describes the requirements of thelinked list data structure as well as some of the problems en-countered in implementing one in a lock-free manner. Sec-tion 3 describes the data structure and basic algorithms forlist traversal, insertion, and deletion. Section 4 shows how toextend these techniques to implement higher-level abstractdata types such as a dictionary. Section 5 discusses the man-agement and allocation of memory, garbage collection, andthe ABA problem. Section 6 concludes with some directionsfor further work.2 Related WorkResearchers have considered the bene�ts of avoiding mu-tual exclusion since at least the early 1970's [6]. Lam-port [17] gave the �rst lock-free algorithm for the problemof a singe-writer/multi-reader shared variable. Herlihy [10]proved that for non-blocking implementation of most inter-esting data types (linked lists among them), a synchroniza-tion primitive that is universal , in conjunction with Readand Write, is both necessary and su�cient. A universal1We also use Test&Set and Fetch&Add; however, these are easilyimplemented with Compare&Swap.

Compare&Swap(a : address; old ; new : word)returns booleanBEGIN ATOMIC1 if a^ 6= old2 a^ new3 return TRUE4 else5 return FALSEEND ATOMICFigure 1: The Compare&Swap synchronization primitive.primitive is one that can solve the consensus problem [7] forany number of processes; Compare&Swap is a universalprimitive.The �rst universal method was given by Herlihy [13];many others followed [1, 4, 11, 22, 26]. However, it hasbecome increasingly apparent that universal methods su�erfrom several sources of ine�ciency, such as wasted paral-lelism, excessive copying, and generally high overhead.In addition to the universal methods, algorithms havealso been developed for lock-free objects that are imple-mented directly. Most of this work has focused on the FIFOqueue data type (cf. [27] for many references), but algo-rithms have also been developed for sets [18], union-�nd [2],scheduling [16], and garbage collection [12]. There has alsobeen a large body of work on implementing more primitivetypes of objects, such as atomic registers and counters. Wenote that many of these papers present data structures thatare based on the linked list; however, none of them permitmodi�cations to the interior of the list.Massalin and Pu [19] coined the term lock-free and im-plemented a multiprocessor operating system kernel usinglock-free data structures. However, their algorithms requirea two word version of the Compare&Swap synchronizationprimitive that is not widely available.2.1 RequirementsThe abstract concept of a list is a collection of items whichhave a linear order; i.e., each item in the list has a position.A singly-linked list data structure consists of a collectionof cells, each representing an item in the list. These cellscontains a number of �elds, in particular a �eld next, whichcontains a pointer to the cell occupying the next positionin the list. Other �elds may contain memory managementinformation, data dependent on the application using thelist, etc. A special root pointer points to the �rst cell in thelist.We use the following notation in our algorithms: if p isa pointer, then p̂ represents the contents of the memorylocation pointed to. If p points at a structure in memory,for example a cell, then p̂ :�eld refers to a �eld within thestructure.We use Compare&Swap as our main synchronizationprimitive. The Compare&Swap primitive takes as argu-ments the pointer, and old and new values. As shown inFigure 1, it atomically checks the value of the pointer, andif it is equal to the old value, updates the pointer to the newvalue. In either case, it returns an indication of whether itsucceeded or not.

The Compare&Swap primitive is often used to swingpointers; to atomically change them from one value to an-other. We will also make use of the primitives Test&Setand Fetch&Add. Both atomically read and modify thevalue of a shared memory location, returning the originalvalue. TheTest&Set primitive sets the new value to TRUE,while Fetch&Add adds and arbitrary value to it.The Compare&Swap primitive is widely available, be-ing found on many common architectures. Newer architec-tures include the Load-Locked and Store-Conditionalprimitives, which can implement Compare&Swap. It canalso be implemented on uniprocessors using the techniqueof atomic restartable sequences [5]. Finally, we note thatthere is growing support for providing Compare&Swap indistributed memory machines as well [9, 21].In order to make concrete the abstract notion of posi-tion, it is convenient to introduce the idea of a cursor . Acursor is associated with an item in the list; the cursor issaid to be visiting that item. A cursor may also be visitinga distinguished position at the end of the list which is notassociated with any item.All access to the list is accomplished via a cursor. Whena new cursor is created, it is visiting the �rst item in the list(or the special end position if the list is empty). An exist-ing cursor can traverse the list by moving from its currentposition to the next one in the list.New items can be added to the list by inserting them atthe position immediately preceding that visited by a givencursor. An item being visited by a cursor can be removedfrom the list by deleting it.We require our lock-free objects to be non-blocking, butnot necessarily wait-free. The non-blocking requirement en-sures that the delay of one process cannot a�ect any other;the wait-free property, while desirable, imposes too muchoverhead upon the implementation. Furthermore, starva-tion at high levels of contention is more e�ciently han-dled by techniques such as exponential backo� (for example,see [15]).We also require our objects to be linearizable [14]; thisimplies that operations appear to happen atomically at somepoint during their execution. Proofs that our data structuresare linearizable are beyond the scope of this paper, but arestraightforward.2.2 ProblemsThe use of Compare&Swap to swing pointers is suscep-tible to the ABA problem, discussed in depth in Section 5.Our solution relies on the careful memory management, andin particular on the use of two operations, SafeRead andRelease. They will be fully described in Section 5; however,for the time being SafeRead can be treated as a normalRead and Release can be treated as a no-op. In additionto these two operations, we will also discuss the managementof free cells in Section 5.At �rst glance, it may not seem too di�cult to imple-ment a lock-free linked list. Traversing this data struc-ture is simple, since it does not involve changes to the liststructure. Insertion of new cells is straightforward usingCompare&Swap; given a pointer q to a new cell, and point-ers p and s to cells in the list such that p̂ :next = s, weinitialize q :̂next = s and then swing the next �eld of pto q. If the operation succeeds, then the new cell has beenlinked into the list; otherwise, a concurrent operation has

changed the list structure, and we must retry the operationafter re-reading the pointers.However, when we consider deleting cells from the list werun into di�culties. First, note that when we delete a cellfrom the list, other processes may have cursors visiting thatcell; we would like these processes to be able to continueusing their cursors to traverse the list, as well as to accessthe contents of the deleted cell. This can be accomplishedby simply keeping the contents of the deleted cell intact; butthis will complicate the reuse of cells that have been deletedfrom the list. We call this cell persistence.Two more serious di�culties are the following. When wedelete a cell from the list, we swing the next pointer in thepreceding cell to point at the following cell. Suppose thatanother process concurrently inserts a cell at the positionimmediately following a cell being deleted. It is possiblethat we might end up with the situation in Figure 2; thecell containing B has been deleted successfully, but the cellcontaining C has not been inserted into the list correctly.Another problem occurs if another process concurrentlydeletes an adjacent cell; this can result in one of the deletionsbeing undone, as shown in Figure 3. These problems stemfrom the fact that we cannot observe the state of the next�elds in two di�erent cells simultaneously, and overcomingthem would seem to require the use of a synchronizationprimitive capable of operating on two words of memory si-multaneously. However, we shall show in the next sectionthat this is not the case.
p

A D

B C

d

sFigure 2: Deletion of B concurrent with insertion of C.
d1, p2

A D

B C

p1

s1, d2

s2Figure 3: Concurrent deletion of B and C; second is undone.3 Auxiliary Nodes and Basic OperationsIn order to overcome the problems described in the last sec-tion, we add auxiliary nodes to the data structure. An auxil-iary node is a cell that contains only a next �eld. We requirethat every normal cell in the list have an auxiliary node asits predecessor and as its successor. We permit \chains" ofauxiliary nodes in the list (i.e., we do not require that ev-ery auxiliary node have a normal cell as its predecessor andsuccessor), although such chains are undesirable for perfor-mance reasons.The list also contains two dummy cells as the �rst andlast normal cells in the list. These two cells are pointedat by the root pointers First and Last. These dummy cells

need not, respectively, be preceded and followed by auxiliarynodes. Thus, an empty list data structure consists of thesetwo dummy cells separated by an auxiliary node (Figure 4).
First LastFigure 4: An empty linked list, with two dummy nodes andan auxiliary node.A cursor is implemented as three pointers into the datastructure: target is a pointer to the cell at the position thecursor is visiting. If the cursor is visiting the end-of-listposition, then target will be equal to Last.The pointer pre aux points to an auxiliary node in thedata structure. For a cursor c, if ĉ :pre aux = ĉ :target,then the cursor is valid ; otherwise it is invalid .The pointer pre cell points to a regular cell in the datastructure. This pointer is used only by the TryDeleteoperation described below.An invalid cursor indicates that the structure of the listin the vicinity of the cursor has changed (due to a concurrentinsertion or deletion by another process) since the pointersin the cursor were last read. The Update algorithm, givenin Figure 5, examines the state of the list and updates thepointers in the cursor so that it becomes valid.Since the list structure contains auxiliary nodes (perhapsmore than one in a row), the Update algorithm must skipover them. If two adjacent auxiliary nodes are found in thelist, the Update algorithm will remove one of them.Traversal of the list data structure is accomplished us-ing the First and Next operations, which use the Updateoperation. Algorithms are given in Figures 6 and 7. TheNext operation returns FALSE if the cursor is already atthe end of the list and cannot be advanced.Adding new cells into the list requires the insertion ofboth the cell and a new auxiliary node. This insertion isrestricted to occur in the following way: The new auxiliarynode will follow the new cell in the list, and insertion canonly occur between an auxiliary node and a normal cell, asshown in Figure 8.Figure 9 gives an algorithm, which takes as arguments acursor and pointers to a new cell and auxiliary node. Thealgorithm will try to insert the new cell and auxiliary nodeUpdate(c : cursor)1 if ĉ :pre aux :̂next = ĉ :target2 return3 p ĉ :pre aux4 n SafeRead(p̂ :next)5 Release(ĉ :target)6 while n 6= Last and n^ is not a normal cell7 Compare&Swap(ĉ :pre cell :̂next; p; n)8 Release(p)9 p n10 n SafeRead(p̂ :next)11 ĉ :pre aux p12 ĉ :target nFigure 5: The cursor Update algorithm.

First(c : cursor)1 ĉ :pre cell SafeRead(First)2 ĉ :pre aux SafeRead(First :̂next)3 ĉ :target NULL4 Update(c)Figure 6: The First algorithm.
Next(c : cursor)returns boolean1 if ĉ :target = Last2 return FALSE3 Release(ĉ :pre cell)4 ĉ :pre cell SafeRead(ĉ :target)5 Release(ĉ :pre aux)6 ĉ :pre aux SafeRead(ĉ :target :̂next)7 Update(c)8 return TRUEFigure 7: The Next algorithm.

A DB

C

p

q

Figure 8: Inserting a new cell and auxiliary node.

TryInsert(c : cursor; q : cell̂ ; a : aux. nodê)returns boolean1 Write(q :̂next; a)2 Write(a :̂next; ĉ :target)3 r CSW(ĉ :pre aux; ĉ :target; q)4 return rFigure 9: The TryInsert algorithm.at the position speci�ed by the cursor, returning the valueTRUE if successful.If the cursor becomes invalid, then the operation returnswithout inserting the new cell and returns the value FALSE.This allows a higher-level operation to detect that a changeto the structure of the list occured and to take it into accountbefore attempting to insert the new cell again. For example,in the next section we show how the items in the list can bekept sorted using this technique.Given a valid cursor, the cell that it is visiting can alsobe deleted from the list. As with the insertion of new cells,if the list structure changes (i.e., the cursor becomes invalid)then the operation fails and must be tried again. Figure 10gives the TryDelete algorithm.The deletion of the cell from the list leaves an \extra"auxiliary node; concurrent processes deleting adjacent cellscan result in longer chains. Most of the TryDelete algo-rithm is concerned with removing the extra auxiliary nodesfrom the list. Normally, removing the extra auxiliary nodethat results from the deletion of a cell from the list is accom-plished by simply swinging the pointer in the cell pointed atby the pre cell pointer in the cursor.However, this does not always work; in particular, thiscell may have itself been deleted from the list, in which caseswinging its next pointer will not remove the extra auxiliarynode. In order to overcome this problem, we add a back link�eld to the normal cells in the list. When a cell is deletedfrom the list, the pre cell �eld of the cursor is copied intothe cell's back link �eld. The TryDelete algorithm canthen use these pointers to traverse back to a cell that hasnot been deleted from the list.With just two processes, it is possible to create a chainof auxiliary nodes (with no intervening normal cells) of anylength. However, any such chain can exist in the list onlyas long as some process is executing the TryDelete algo-rithm. If all deletions have been completed, then the listwill contain no extra auxiliary nodes.To see this, assume that there is a chain of two or moreauxiliary nodes in the list. Let x be the normal cell thatwas deleted from between the �rst two auxiliary nodes inthe chain. Note that this implies that the normal cell thatimmediately preceded x in the list has not been deleted.By assumption, the operation that deleted x has com-pleted. Consider the loop at lines 17{21 of the TryDeletealgorithm. The only way for the process to exit this loop,and hence to complete the operation, is for another deletionoperation to have extended the chain of auxiliary nodes bydeleting the normal cell y immediately following the chain,since the cell x is at the front of the chain.Furthermore, the deletion of y must have occured af-ter the operation deleting x had set its back link pointerat line 6; otherwise the auxiliary node following y would

TryDelete(c : cursor)returns boolean1 d ĉ :target2 n ĉ :target :̂next3 r CSW(ĉ :pre aux :̂next; d; n)4 if r 6= TRUE5 return FALSE6 Write(d̂ :back link; ĉ :pre cell)7 p ĉ :pre cell8 while p̂ :back link 6= NULL9 q SafeRead(p̂ :back link)10 Release(p)11 p q12 s SafeRead(p̂ :next)13 while n :̂next^ is not a normal cell14 q SafeRead(n :̂next)15 Release(n)16 n qrepeat17 r CSW(p̂ :next; s; n)18 if r = FALSE19 Release(s)20 s SafeRead(p̂ :next)21 until r = TRUEor p̂ :back link 6= NULLor n :̂next is not a normal cell22 Release(p)23 Release(s)24 Release(n)25 return TRUEFigure 10: The TryDelete algorithm.

FindFrom(k : key; c : cursor)returns boolean1 while ĉ :target 6= Last2 if ĉ :target :̂key = k3 return TRUE4 else if ĉ :target :̂key > k5 return FALSE6 else7 Next(c)8 return FALSEFigure 11: The FindFrom algorithm.have been included in the chain found in lines 13{16. Thus,the chain of back link pointers followed by the process thatdeleted y will lead to the same normal cell that preceded x.Now, the only way for the operation that deleted y tohave completed is for the same reason as above; i.e., an-other TryDelete operation must extend the chain of aux-iliary nodes by deleting a cell z. Since the length of thelist must be �nite, there must be a last such deletion which,but by the argument above, cannot have completed. Thusthis operation must still be in progress, contradicting theassumption that there were no TryDelete operations inprogress.4 DictionariesA linked list is useful as a building block for other datastructures. We now show how the ideas in the last sectioncan be applied to the problem of implementing various lock-free data structures for the dictionary abstract data type.A dictionary contains a collection of items which aredistinguished by distinct keys, and provides the operationsFind, Insert, and Delete. Using the data structures andalgorithms presented in Section 3, we can implement a non-blocking dictionary using four data structures: a sorted list,a hash table, a skip list, and a binary search tree.4.1 List StructuresWe will assume that each cell has a �eld key which containsthe unique key for the item stored in the cell. We will ensurethat the keys of items stored in the dictionary are uniquebe keeping the items in the list sorted by their key values.Figure 11 gives an algorithm that searches the list, startingfrom a given cursor position, for a cell containing a givenkey. It returns a boolean value indicating whether or not anitem with the requested key was found. The dictionary Findoperation is implemented by using this operation, startingfrom the �rst position in the list.The dictionary Insert operation is performed by the al-gorithm in Figure 12. It is necessary to �rst ensure thatan item with the same key is not already in the dictionary.If one is not, then the FindFrom algorithm will leave thecursor positioned in the correct place to insert the new cell.If the insertion of the new cell fails due to changes to thelist structure by concurrent operations, it is necessary tocheck again that the key value will be unique, after updat-ing the value of the cursor. Note that the cursor Updatealgorithm ensures that if another cell is inserted with the

Insert(k : key)1 First(c)2 q new cell3 a new aux. node4 initialize other �leds of qloop:5 r FindFrom(k; c)6 if r = TRUE7 return8 r TryInsert(c; q; a)9 if r = TRUE10 return11 Update(c)12 goto loopFigure 12: The Insert algorithm.Delete(k : key)1 First(c)loop:2 r FindFrom(k; c)3 if r = FALSE4 return5 r TryDelete(c)6 if r = TRUE7 return8 Update(c)9 goto loopFigure 13: The Delete algorithm.same key, the cursor will be positioned in such a way thatthe FindFrom algorithm will �nd it.The dictionary Delete operation is accomplished in asimilar way; the FindFrom algorithm is used to locate theposition of the cell containing the given key (if it is in thelist), and the TryDelete algorithm is then used to deletethe cell. If the TryDelete algorithm fails, we update thecursor and continue the search for the key.We can compare the performance of this non-blockingconcurrent dictionary implementation to a similar sequentialimplementation using a sorted linked list. A non-constantfactor slowdown can come from two sources: work donetraversing extra auxiliary nodes in the list structure, andrepetitive calls to TryInsert and TryDelete. For a sin-gle operation, it is impossible to place bounds on this extrawork.However, we can bound the amortized work by consid-ering a sequence of dictionary operations performed by anumber of processes. With p concurrent processes, eachsuccessfully completed operation can cause p�1 concurrentprocesses to have to retry a TryInsert or TryDelete op-eration. In addition, in the worst case each operation mayhave to traverse an extra auxiliary node left by every previ-ous operation. Thus, the total work done by the concurrentnon-blocking implementation for a sequence of n operationsby p processes is O(n2), within a constant factor of optimal.A straightforward extension of this implementation uses

a hash table. In this case, if we assume that the hash func-tion evenly distributes the operations across the lists, thenwe would expect the extra work done to be O(1).We can implement a lock-free skip list [24] as a collectionof k sorted singly-linked lists2, such that higher level listscontain a subset of the cells in lower level lists. As in [23],insertions and deletions are performed one level at a time,insertions starting with the bottom level and working up,and deletions starting at the top and working down.Although the structure of the skip list reduces the amountof work done traversing the list, a large amount of extra workmay be incurred due to processes attempting to modify thesame portion of the list. In the worst case this extra workmay be O(p log n).4.2 Binary Search TreesBinary search trees can also be implemented by adapting thetechniques of Section 3. Each cell in the tree has a left andright auxiliary node between itself and its subtrees (theseauxiliary nodes are present even if the subtree is empty).Thus, searching for a cell with a given key in the binarysearch tree is almost identical to the algorithm for the stan-dard sequential binary search tree.Since the insertion of new cells occurs only at the leavesof the tree, adding new cells to the tree is fairly straightfor-ward, involving simply swinging the pointer in the auxiliarynode at the leaf. The remainder of this section will deal withthe deletion of cells from the tree.To delete cells with at most one child, we must �rst in-sure that the cell will not gain a second child during deletion.To do this we �rst merge the subtrees by swinging the aux-iliary node pointer preceding the empty child to point atthe auxiliary node preceding the child to be deleted. Thuswe e�ectively \short circuit" any processes traversing thetree from proceeding down that branch of the tree, shuntingthem to the other branch instead. We can then splice outthe cell to be deleted and remove extra auxiliary nodes usingtechniques similar to those in Section 3.If a cell has two children, we must move one of the sub-trees �rst. Note that we cannot move any cell closer to theroot, since this could result in concurrent processes beingunable to �nd its key while traversing the tree, resultingin non-linearizable behavior. Instead, we can move one ofthe subtrees of the cell being deleted down in the tree; e.g.,making its left subtree the left child of its in-order successor.Figure 14 illustrates how this could be done; �rst we �ndthe in-order successor (node G) of the node to be deleted(node F). We then swing the auxiliary node preceding its(empty) left child to point at the left subtree of the cell tobe deleted. We can then remove the cell and extra auxiliarynodes with three more steps, as indicated in the �gure.The e�ect of this deletion method on the performanceof the binary search tree is unknown. If we consider onlyFind and Insert dictionary operations, then the amount ofextra work done by a sequence of operations is expected tobe O(n log n), since the tree has expected height O(log n)and any cell that is inserted can only have been retried oncefor every cell on the path back to the root.2k is a parameter generally chosen to be �(logN), where N is thenumber of items expected to be in the skip list.

A

B

F

D

C E

G

Figure 14: Deletion of cell with two children.5 Memory ManagementWe have thus far assumed that new cells could be allocatedwhenever necessary, and that deleted cells could be left in-tact for cursors to continue traversing them. In addition, weclaimed in Section 2.1 that our solution to the ABA problemrelied on careful memory management. In this section weaddress these issues.5.1 The ABA ProblemWe have used the Compare&Swap primitive in our algo-rithms to atomically swing pointers from their current valueto a new one. However, using Compare&Swap in this man-ner is susceptible to the following problem known as theABA problem. When swinging a pointer, we do not wantthe pointer to change if its value has changed from whenit was read. This problem occurs when the pointer haschanged, but then subsequently changes back to its origi-nal value. In this case, the Compare&Swap primitive willsuccessfully change the value of the pointer, possibly cor-rupting the data structure.There are several ways to avoid this problem. One com-monly used approach makes use of a double-word versionof the Compare&Swap operation. The idea is to attach atag value to each pointer; every time the pointer is changed,the tag is incremented (the double-word Compare&Swapis used to change both the pointer and tag values simulta-neously). Thus, even if the pointer changes back to a pre-vious value, the tag value will most likely be di�erent andthe Compare&Swap operation will fail. Unfortunately, thisdouble-word version of Compare&Swap is not available onmost architectures.Another approach is to use a stronger primitive. Forexample, on on architectures such as the DEC Alpha, theLoad-Locked operation can be used to read a pointer, andthe Store-Conditional operation can be used to swing it.Unlike Compare&Swap, the Store-Conditional primi-tive will change the pointer only if it has not changed, andit is not susceptible to the ABA problem.Although the Load-Locked and Store-Conditionalprimitives are found on a fair number of newer architectures,this technique su�ers from the fact that these primitivesare implemented with certain restrictions; for example, itis generally not possible to read from memory between aLoad-Locked and a Store-Conditional (cf. [25]). Thisrestriction makes it impossible to implement our algorithmsusing these primitives.

The approach we take in this paper makes use of theobservation that in the normal operation of the algorithmsgiven in the previous sections, a pointer is never changedback to a previous value. The only way for a pointer totake on a previous value is for cells to be reused after theyhave been deleted from the data structure. If we prohibitthis reuse, then we may use the Compare&Swap primitivewithout worrying about the ABA problem.In most applications, it is probably not realistic to as-sume that cells will not be reused. However, we make thefurther observation that the ABA problem can only occurif a cell is reused while another process has a pointer to it.Thus, we can safely reuse cells, avoiding the ABA problem,as long as we can guarantee that no other processes havepointers to the cell.We accomplish this through the use of reference counts;each cell has a �eld refct and another �eld claim (describedbelow). These reference counts are manipulated through theSafeRead and Release operations used in the algorithms.Note that the problem of cell persistence is also solved bythe use of these reference counts, as cells that can no longerbe accessed from the list or through cursors are available forreuse.The SafeRead operation atomically reads a pointer andincrements the reference count in the cell being pointed at.The Release operation decrements the reference count andreclaims the cell for reuse, if there are not other pointersto the cell. Figures 15 and 16 give algorithms for theseoperations. SafeRead(p : pointer)returns pointer1 loop: q Read(p)2 if q = NULL then3 return NULL4 Increment(q :̂refct)5 if q = Read(p) then6 return qelse7 Release(q)8 goto loopFigure 15: Algorithm for the SafeRead operation.Release(p : pointer)1 c Fetch&Add(p̂ :refct;�1)2 if c > 1 then3 return4 c Test&Set(p̂ :claim)5 if c = 1 then6 returnelse7 Reclaim(p)Figure 16: Algorithm for the Release operation.Note that care must be taken in the Release algorithm,as it is possible for more than one processes to concurrently

see the reference count go to zero in the same cell. The claim�eld in the cell is used to ensure that only one process willactually try to reclaim the cell for reuse.5.2 Managing Free CellsIn addition to the SafeRead and Release operations, weneed to be able to allocate and reclaim cells. One wayof solving this problem is with another concurrent object,which acts as a set containing free cells that may be al-located to processes. This object provides two operations:Alloc removes a free cell from the set and returns it tobe used by a process, and Reclaim returns a cell no longerbeing used to the set of free cells.For brevity, we describe only a very simple implemen-tation of this object, in which free cells must all be of thesame size. are kept on a simple list. Much more elaborateschemes are possible; in particular, in [28] we show how toextend these ideas to implement a lock-free buddy systemwhich provides management of variable-sized cells.We keep cells which are not in use on a free list. Newcells are allocated by removing them from the front of thelist, and cells are reclaimed by putting them back on thefront (i.e., the list acts as a stack). Figures 17 and 18 givealgorithms for the Alloc and Reclaim operations.Alloc()returns pointerrepeat1 q SafeRead(Freelist)2 if q = NULL3 return NULL4 r CSW(Freelist; q; q :̂next)5 if r = FALSE6 Release(q)7 until r = TRUE8 Write(q :̂claim; 0)9 return qFigure 17: Algorithm for the Alloc operation.The variable Freelist is a pointer to the �rst free cell onthe list. Note that the Alloc algorithm must make use ofthe SafeRead and Release operations in order to avoidthe ABA problem.Reclaim(p : pointer)repeat1 q Freelist2 Write(p̂ :next; q)3 r CSW(Freelist; q; p)4 until r = TRUEFigure 18: Algorithm for the Reclaim operation.

6 ConclusionWe have presented algorithms using Compare&Swap formanipulating a singly-linked list with concurrent processeswithout the use of mutual exclusion. This includes travers-ing the list using cursors, insertion and deletion of nodes atany point in the list, and memory management. We haveshown how these techniques can be used as building blocksfor other types of concurrent objects, such as the dictionaryabstract data type. All of our algorithms have the propertythat they are non-blocking.We chose Compare&Swap as our synchronization prim-itive for several reasons. Not only is it is universal, in thesense that it is powerful enough to implement a non-blockinglinked list, but it is also commonly available on a number ofarchitectures.We expect the performance of our algorithms to be com-petitive with similar data structures that use spin locks. Themost time consuming operation is most likely performing aSafeRead on each cell as we traverse the list; it would beuseful to have this operation implemented in hardware.Preliminary performance analysis of these algorithms canbe found in [28]; however, more work remains to be done inorder to quantitatively determine the performance trade-o�s between algorithms such as these and more traditionalmethods using mutual exclusion. We are currently examin-ing the performance of these algorithms and data structuresexperimentally.References[1] J. Alemany and E. W. Felten. Performance issues innon-blocking synchronization on shared-memory mul-tiprocessors. In Proceedings of the Eleventh Symposiumon Principles of Distributed Computing, pages 125{134,1992.[2] R. J. Anderson and H. Woll. Wait-free parallel algo-rithms for the union-�nd problem. In Proceedings of theTwenty-Third ACM Symposium on Theory of Comput-ing, pages 370{380, 1991.[3] T. Anderson. Operating System Support for High Per-formance Multiprocessing. PhD thesis, University ofWashington, Department of Computer Science and En-gineering, Seattle, WA, 1991. University of Washing-ton Department of Computer Science and EngineeringTechnical Report 91{08{10.[4] G. Barnes. A method for implementing lock-free shareddata structures. In Proceedings of the Fifth Symposiumon Parallel Algorithms and Architectures, pages 261{270, 1993.[5] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast mu-tual exclusion for uniprocessors. In Proceedings of theFifth International Conference on Architectural Sup-port for Programming Languages and Operating Sys-tems, pages 223{233, 1992.[6] W. B. Easton. Process synchronization without long-term interlock. In Proceedings of the Third Symposiumon Operating Systems Principles, pages 95{100, 1972.[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-sibility of distributed consensus with one faulty process.Journal of the ACM, pages 374{382, 1985.

[8] G. Graunke and S. Thakkar. Synchronization algo-rithms for shared-memory multiprocessors. Computer,23:60{69, June 1990.[9] D. B. Gustavson. The Scalable Coherent Interface andrelated standards projects. IEEE Micro, pages 10{22,February 1922.[10] M. Herlihy. Wait-free synchronization. ACM Trans-actions on Programming Languages and Systems,11(1):124{149, January 1991.[11] M. Herlihy. A methodology for implementing highlyconcurrent data objects. ACM Transactions on Pro-gramming Languages and Systems, 15:745{770, Novem-ber 1993.[12] M. Herlihy and J. Moss. Lock-free garbage collection formultiprocessors. In Proceedings of the Third Symposiumon Parallel Algorithms and Architectures, pages 229{236, July 1991.[13] M. P. Herlihy. Impossibility and universality results forwait-free synchronization. In Proceedings of the Sev-enth Symposium on Principles of Distributed Comput-ing, pages 276{290, 1988.[14] M. P. Herlihy and J. M. Wing. Linearizability: Acorrectness condition for concurrent objects. ACMTransactions on Programming Languages and Systems,12(3):463{492, 1990.[15] Q. Huang andW. E. Weihl. An evaluation of concurrentpriority queue algorithms. In Proceedings of the ThirdIEEE Symposium on Parallel and Distributed Process-ing, pages 518{525, 1991.[16] S. Hummel and E. Schonberg. Low-overhead schedulingof nested parallelism. IBM Journal Of Research AndDevelopment, 35:743{765, Sep 1991.[17] L. Lamport. Concurrent reading and writing. Commu-nications of the ACM, 20(11):806{811, 1977.[18] V. Lanin and D. Shasha. Concurrent set manipulationwithout locking. In Proceedings of the Seventh Sympo-sium on Principles of Database Systems, pages 211{220,March 1988.[19] H. Massalin and C. Pu. A lock-free multiprocessor OSkernel. Technical Report CUCS{005{91, Columbia Uni-versity, 1991.[20] J. Mellor-Crummey and M. Scott. Algorithms forscalable synchronization on shared-memory multipro-cessors. ACM Transactions on Computer Systems,9(1):21{65, February 1991.[21] M. M. Michael and M. L. Scott. Implementationof general-purpose atomic primitives for distributedshared-memory multiprocessors. In First InternationalSymposium on High Performance Computer Architec-ture, January 1995. Also Univ. of Rochester ComputerScience Dept. TR 528.[22] S. A. Plotkin. Sticky bits and universality of consensus.In Proceedings of the Eighth Symposium on Principlesof Distributed Computing, pages 159{175, 1989.

[23] W. Pugh. Concurrent maintenance of skip lists. Techni-cal Report CS-TR-2222.1, Institute for Advanced Com-puter Studies, Department of Computer Science, Uni-versity of Maryland, College Park, 1989.[24] W. Pugh. Skip lists: A probabilistic alternative to bal-anced trees. Communications of the ACM, 33(6):668{676, June 1990.[25] R. L. Sites, editor. Alpha Architecture Reference Man-ual. Digital Press, Burlington, MA, 1992.[26] J. Turek, D. Shasha, and S. Prakash. Locking with-out blocking: Making lock based concurrent data stru-cuture algorithms nonblocking. In Proceedings of theEleventh Symposium on Principles of Database Sys-tems, 1992.[27] J. D. Valois. Implementing lock-free queues. In Proceed-ings of the Seventh International Conference on Paral-lel and Distributed Computing Systems, pages 64{69,Las Vegas, NV, October 1994. Available as RPI Dept.of Comp. Sci. Tech. Report #94{17.[28] J. D. Valois. Lock-Free Data Structures. PhD thesis,Rensselaer Polytechnic Institute, Department of Com-puter Science, 1995.

