
Chapter 7

Lock-Free and Practical
Deques and Doubly Linked
Lists using Single-Word
Compare-And-Swap1

H̊akan Sundell, Philippas Tsigas
Department of Computing Science

Chalmers Univ. of Technol. and Göteborg Univ.
412 96 Göteborg, Sweden

E-mail: {phs, tsigas}@cs.chalmers.se

Abstract

We present an efficient and practical lock-free implementation of a con-
current deque that supports parallelism for disjoint accesses and uses atomic
primitives which are available in modern computer systems. Previously
known lock-free algorithms of deques are either based on non-available atomic
synchronization primitives, only implement a subset of the functionality, or
are not designed for disjoint accesses. Our algorithm is based on a general
lock-free doubly linked list, and only requires single-word compare-and-swap

1This is a revided and extended version of the paper that appeared as a technical report
[19]. A preliminary version of this paper was also submitted to PODC 2004.

2 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

atomic primitives. It also allows pointers with full precision, and thus sup-
ports dynamic deque sizes. We have performed an empirical study using
full implementations of the most efficient known algorithms of lock-free de-
ques. For systems with low concurrency, the algorithm by Michael shows
the best performance. However, as our algorithm is designed for disjoint ac-
cesses, it performs significantly better on systems with high concurrency and
non-uniform memory architecture. In addition, the proposed solution also
implements a general doubly linked list, the first lock-free implementation
that only needs the single-word compare-and-swap atomic primitive.

7.1 Introduction

A deque (i.e. double-ended queue) is a fundamental data structure. For
example, deques are often used for implementing the ready queue used for
scheduling of tasks in operating systems. A deque supports four opera-
tions, the PushRight, the PopRight, the PushLeft, and the PopLeft oper-
ation. The abstract definition of a deque is a list of values, where the
PushRight/PushLeft operation adds a new value to the right/left edge of the
list. The PopRight/PopLeft operation correspondingly removes and returns
the value on the right/left edge of the list.

To ensure consistency of a shared data object in a concurrent environ-
ment, the most common method is mutual exclusion, i.e. some form of lock-
ing. Mutual exclusion degrades the system’s overall performance [17] as it
causes blocking, i.e. other concurrent operations can not make any progress
while the access to the shared resource is blocked by the lock. Mutual ex-
clusion can also cause deadlocks, priority inversion and even starvation.

In order to address these problems, researchers have proposed non-
blocking algorithms for shared data objects. Non-blocking algorithms do
not involve mutual exclusion, and therefore do not suffer from the problems
that blocking could generate. Lock-free implementations are non-blocking
and guarantee that regardless of the contention caused by concurrent oper-
ations and the interleaving of their sub-operations, always at least one op-
eration will progress. However, there is a risk for starvation as the progress
of some operations could cause some other operations to never finish. Wait-
free [9] algorithms are lock-free and moreover they avoid starvation as well,
as all operations are then guaranteed to finish in a limited number of their
own steps. Recently, some researchers also include obstruction-free [11] im-
plementations to the non-blocking set of implementations. These kinds of
implementations are weaker than the lock-free ones and do not guarantee

7.1. INTRODUCTION 3

progress of any concurrent operation.
The implementation of a lock-based concurrent deque is a trivial task,

and can preferably be constructed using either a doubly linked list or a
cyclic array, protected by either a single lock or by multiple locks where
each lock protects a part of the shared data structure. To the best of our
knowledge, there exists no implementations of wait-free deques, but several
lock-free implementations have been proposed. However, all previously lock-
free deques lack in several important aspects, as they either only implement
a subset of the operations that are normally associated with a deque and
have concurrency restrictions2 like Arora et al. [2], or are based on atomic
hardware primitives like Double-Word Compare-And-Swap (CAS2)3 which
is not available in modern computer systems. Greenwald [5] presented a
CAS2-based deque implementation as well as a general doubly linked list
implementation [6], and there is also a publication series of a CAS2-based
deque implementation [1],[4] with the latest version by Martin et al. [13].
Valois [20] sketched out an implementation of a lock-free doubly linked list
structure using Compare-And-Swap (CAS)4, though without any support
for deletions and is therefore not suitable for implementing a deque. Michael
[15] has developed a deque implementation based on CAS. However, it is not
designed for allowing parallelism for disjoint accesses as all operations have
to synchronize, even though they operate on different ends of the deque.
Secondly, in order to support dynamic maximum deque sizes it requires an
extended CAS operation that can atomically operate on two adjacent words,
which is not available5 on all modern platforms.

In this paper we present a lock-free algorithm for implementing a con-
current deque that supports parallelism for disjoint accesses (in the sense
that operations on different ends of the deque do not necessarily interfere
with each other). The algorithm is implemented using common synchro-
nization primitives that are available in modern systems. It allows pointers
with full precision, and thus supports dynamic maximum deque sizes (in
the presence of a lock-free dynamic memory handler with sufficient garbage
collection support), still using normal CAS-operations. The algorithm is

2The algorithm by Arora et al. does not support push operations on both ends, and
does not allow concurrent invocations of the push operation and a pop operation on the
opposite end.

3A CAS2 operations can atomically read-and-possibly-update the contents of two non-
adjacent memory words. This operation is also sometimes called DCAS in the literature.

4The standard CAS operation can atomically read-and-possibly-update the contents
of a single memory word

5It is available on the Intel IA-32, but not on the Sparc or MIPS microprocessor archi-
tectures. It is neither available on any currently known and common 64-bit architecture.

4 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

Local Memory

Processor 1

Local Memory

Processor 2

Local Memory

Processor n

Shared Memory

Interconnection Network

. . .

Figure 7.1: Shared Memory Multiprocessor System Structure

described in detail later in this paper, together with the aspects concerning
the underlying lock-free memory management. In the algorithm description
the precise semantics of the operations are defined and a proof that our
implementation is lock-free and linearizable [12] is also given. We also give
a detailed description of all the fundamental operations of a general doubly
linked list data structure.

We have performed experiments that compare the performance of our al-
gorithm with two of the most efficient algorithms of lock-free deques known;
[15] and [13], the latter implemented using results from [3] and [7]. Exper-
iments were performed on three different multiprocessor systems equipped
with 2,4 or 29 processors respectively. All three systems used were run-
ning different operating systems and were based on different architectures.
Our results show that the CAS-based algorithms outperforms the CAS2-
based implementations6 for any number of threads and any system. In
non-uniform memory architectures with high contention our algorithm, be-
cause of its disjoint access property, performs significantly better than the
algorithm in [15].

The rest of the paper is organized as follows. In Section 7.2 we describe
the type of systems that our implementation is aiming for. The actual
algorithm is described in Section 7.3. In Section 7.4 we define the precise se-
mantics for the operations on our implementation, and show the correctness
of our algorithm by proving the lock-free and linearizability properties. The
experimental evaluation is presented in Section 7.5. In Section 7.6 we give
the detailed description of the fundamental operations of a general doubly
linked list. We conclude the paper with Section 7.7.

6The CAS2 operation was implemented in software, using either mutual exclusion or
the results from [7], which presented an software CASn (CAS for n non-adjacent words)
implementation.

7.2. SYSTEM DESCRIPTION 5

v1 vi vj vn. . .

. . .

. . .

Head Tail

prev

next

Figure 7.2: The doubly linked list data structure.

7.2 System Description

A typical abstraction of a shared memory multi-processor system configura-
tion is depicted in Figure 7.1. Each node of the system contains a processor
together with its local memory. All nodes are connected to the shared mem-
ory via an interconnection network. A set of co-operating tasks is running on
the system performing their respective operations. Each task is sequentially
executed on one of the processors, while each processor can serve (run) many
tasks at a time. The co-operating tasks, possibly running on different pro-
cessors, use shared data objects built in the shared memory to co-ordinate
and communicate. Tasks synchronize their operations on the shared data
objects through sub-operations on top of a cache-coherent shared memory.
The shared memory may not though be uniformly accessible for all nodes
in the system; processors can have different access times on different parts
of the memory.

7.3 The Algorithm

The algorithm is based on a doubly linked list data structure, see Figure
7.2. To use the data structure as a deque, every node contains a value.
The fields of each node item are described in Figure 7.6 as it is used in
this implementation. Note that the doubly linked list data structure always
contains the static head and tail dummy nodes.

In order to make the doubly linked list construction concurrent and non-
blocking, we are using two of the standard atomic synchronization primi-
tives, Fetch-And-Add (FAA) and Compare-And-Swap (CAS). Figure 7.3
describes the specification of these primitives which are available in most
modern platforms.

To insert or delete a node from the list we have to change the respective
set of prev and next pointers. These have to be changed consistently, but

6 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure FAA(address:pointer to word, number:integer)
atomic do

*address := *address + number;

function CAS(address:pointer to word, oldvalue:word,
newvalue:word):boolean

atomic do
if *address = oldvalue then

*address := newvalue;
return true;

else return false;

Figure 7.3: The Fetch-And-Add (FAA) and Compare-And-Swap (CAS)
atomic primitives.

not necessarily all at once. Our solution is to treat the doubly linked list as
being a singly linked list with auxiliary information in the prev pointers, with
the next pointers being updated before the prev pointers. Thus, the next
pointers always form a consistent singly linked list, but the prev pointers only
give hints for where to find the previous node. This is possible because of
the observation that a “late” non-updated prev pointer will always point to
a node that is directly or some steps before the current node, and from that
“hint” position it is always possible to traverse7 through the next pointers
to reach the directly previous node.

One problem, that is general for non-blocking implementations that are
based on the singly linked list data structure, arises when inserting a new
node into the list. Because of the linked list structure one has to make sure
that the previous node is not about to be deleted. If we are changing the
next pointer of this previous node atomically with the CAS operation, to
point to the new node, and then immediately afterwards the previous node
is deleted - then the new node will be deleted as well, as illustrated in Figure
7.4. There are several solutions to this problem. One solution is to use the
CAS2 operation as it can change two pointers atomically, but this operation
is not available in any modern multiprocessor system. A second solution is
to insert auxiliary nodes [20] between every two normal nodes, and the latest
method introduced by Harris [8] is to use a deletion mark. This deletion
mark is updated atomically together with the next pointer. Any concurrent

7As will be shown later, we have defined the deque data structure in a way that makes
it possible to traverse even through deleted nodes, as long as they are referenced in some
way.

7.3. THE ALGORITHM 7

1 2 4

3

Inserted node

Deleted node

I

II

I

II

Figure 7.4: Concurrent insert and delete operation can delete both nodes.

insert operation will then be notified about the possibly set deletion mark,
when its CAS operation will fail on updating the next pointer of the to-be-
previous node. For our doubly linked list we need to be informed also when
inserting using the prev pointer.

In order to allow usage of a system-wide dynamic memory handler (which
should be lock-free and have garbage collection capabilities), all significant
bits of an arbitrary pointer value must be possible to be represented in both
the next and prev pointers. In order to atomically update both the next
and prev pointer together with the deletion mark as done by Michael [15],
the CAS-operation would need the capability of atomically updating at least
30+30+1 = 61 bits on a 32-bit system (and 62+62+1 = 125 bits on a 64-bit
system as the pointers are then 64 bit). In practice though, most current 32
and 64-bit systems only support CAS operations of single word-size.

However, in our doubly linked list implementation, we never need to
change both the prev and next pointers in one atomic update, and the
pre-condition associated with each atomic pointer update only involves the
pointer that is changed. Therefore it is possible to keep the prev and next
pointers in separate words, duplicating the deletion mark in each of the
words. In order to preserve the correctness of the algorithm, the deletion
mark of the next pointer should always be set first, and the deletion mark
of the prev pointer should be assured to be set by any operation that have
observed the deletion mark on the next pointer, before any other updating
steps are performed. Thus, full pointer values can be used, still by only
using standard CAS operations.

8 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

vi vj

vx

. . .

. . .

. . .

. . .

. . .

. . .

vi vj

vx

. . .

. . .

. . .

. . .

. . .

. . .

vi vjvx
. . .
. . .
. . .

. . .

. . .

. . .

I

II

vi vjvx

vi vj

vx IV

vi vj

vx

III I

II

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Insert(vx)

Delete(vx)

Figure 7.5: Illustration of the basic steps of the algorithms for insertion and
deletion of nodes at arbitrary positions in the doubly linked list.

7.3.1 The Basic Steps of the Algorithm

The main algorithm steps, see Figure 7.5, for inserting a new node at an arbi-
trary position in our doubly linked list will thus be like follows: I) Atomically
update the next pointer of the to-be-previous node, II) Atomically update
the prev pointer of the to-be-next node. The main steps of the algorithm for
deleting a node at an arbitrary position are the following: I) Set the dele-
tion mark on the next pointer of the to-be-deleted node, II) Set the deletion
mark on the prev pointer of the to-be-deleted node, III) Atomically update
the next pointer of the previous node of the to-be-deleted node, IV) Atom-
ically update the prev pointer of the next node of the to-be-deleted node.
As will be shown later in the detailed description of the algorithm, helping
techniques need to be applied in order to achieve the lock-free property,
following the same steps as the main algorithm for inserting and deleting.

7.3. THE ALGORITHM 9

7.3.2 Memory Management

As we are concurrently (with possible preemptions) traversing nodes that
will be continuously allocated and reclaimed, we have to consider several
aspects of memory management. No node should be reclaimed and then later
re-allocated while some other process is (or will be) traversing that node.
For efficiency reasons we also need to be able to trust the prev and next
pointers of deleted nodes, as we would otherwise be forced to re-start the
traversing from the head or tail dummy nodes whenever reaching a deleted
node while traversing and possibly incur severe performance penalties. This
need is especially important for operations that try to help other delete
operations in progress. Our demands on the memory management therefore
rules out the SMR or ROP methods by Michael [14] and Herlihy et al.
[10] respectively, as they can only guarantee a limited number of nodes to
be safe via the hazard pointers, and these guarantees are also related to
individual threads and never to an individual node structure. However,
stronger memory management schemes as for example reference counting
would be sufficient for our needs. There exists a general lock-free reference
counting scheme by Detlefs et al. [3], though based on the non-available
CAS2 atomic primitive.

For our implementation, we selected the lock-free memory management
scheme invented by Valois [20] and corrected by Michael and Scott [16],
which makes use of the FAA and CAS atomic synchronization primitives.
Using this scheme we can assure that a node can only be reclaimed when
there is no prev or next pointer in the list that points to it. One problem
though with this scheme, a general problem with reference counting, is that
it can not handle cyclic garbage (i.e. 2 or more nodes that should be recycled
but reference each other, and therefore each node keeps a positive reference
count, although they are not referenced by the main structure). Our solution
is to make sure to break potential cyclic references directly before a node is
possibly recycled. This is done by changing the next and prev pointers of a
deleted node to point to active nodes, in a way that is consistent with the
semantics of other operations.

The memory management scheme should also support means to de-
reference pointers safely. If we simply de-reference a next or prev pointer
using the means of the programming language, it might be that the corre-
sponding node has been reclaimed before we could access it. It can also be
that the deletion mark that is connected to the prev or next pointer was set,
thus marking that the node is deleted. The scheme by Valois et al. supports
lock-free pointer de-referencing and can easily be adopted to handle deletion

10 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

marks.
The following functions are defined for safe handling of the memory

management:

function MALLOC NODE() :pointer to Node
function READ NODE(address:pointer to Link) :pointer to Node
function READ DEL NODE(address:pointer to Link) :pointer to Node
function COPY NODE(node:pointer to Node) :pointer to Node
procedure RELEASE NODE(node:pointer to Node)

The functions READ NODE and READ DEL NODE atomically de-references
the given link and increases the reference counter for the corresponding node.
In case the deletion mark of the link is set, the READ NODE function then
returns NULL. The function MALLOC NODE allocates a new node from the
memory pool of pre-allocated nodes. The function RELEASE NODE decre-
ments the reference counter on the corresponding given node. If the reference
counter reaches zero, the function then calls the ReleaseReferences function
that will recursively call RELEASE NODE on the nodes that this node has
owned pointers to, and then it reclaims the node. The COPY NODE func-
tion increases the reference counter for the corresponding given node.

As the details of how to efficiently apply the memory management scheme
to our basic algorithm are not always trivial, we will provide a detailed de-
scription of them together with the detailed algorithm description in this
section.

7.3.3 Pushing and Popping Nodes

The PushLeft operation, see Figure 7.7, inserts a new node at the leftmost
position in the deque. The algorithm first repeatedly tries in lines L4-L14 to
insert the new node (node) between the head node (prev) and the leftmost
node (next), by atomically changing the next pointer of the head node.
Before trying to update the next pointer, it assures in line L5 that the next
node is still the very next node of head, otherwise next is updated in L6-L7.
After the new node has been successfully inserted, it tries in lines P1-P13 to
update the prev pointer of the next node. It retries until either i) it succeeds
with the update, ii) it detects that either the next or new node is deleted,
or iii) the next node is no longer directly next of the new node. In any of
the two latter, the changes are due to concurrent Pop or Push operations,
and the responsibility to update the prev pointer is then left to those. If
the update succeeds, there is though the possibility that the new node was

7.3. THE ALGORITHM 11

union Link
: word
〈p, d〉: 〈pointer to Node, boolean〉

structure Node
value: pointer to word
prev: union Link
next: union Link

// Global variables
head, tail: pointer to Node
// Local variables
node,prev,prev2,next,next2: pointer to Node
link1,lastlink: union Link

function CreateNode(value: pointer to word):pointer to Node
C1 node:=MALLOC NODE();
C2 node.value:=value;
C3 return node;

procedure ReleaseReferences(node: pointer to Node)
RR1 RELEASE NODE(node.prev.p);
RR2 RELEASE NODE(node.next.p);

Figure 7.6: The basic algorithm details.

deleted (and thus the prev pointer of the next node was possibly already
updated by the concurrent Pop operation) directly before the CAS in line
P5, and then the prev pointer is updated by calling the HelpInsert function
in line P10.

The PushRight operation, see Figure 7.8, inserts a new node at the right-
most position in the deque. The algorithm first repeatedly tries in lines
R4-R13 to insert the new node (node) between the rightmost node (prev)
and the tail node (next), by atomically changing the next pointer of the prev
node. Before trying to update the next pointer, it assures in line R5 that
the next node is still the very next node of prev, otherwise prev is updated
by calling the HelpInsert function in R6, which updates the the prev pointer
of the next node. After the new node has been successfully inserted, it tries
in lines P1-P13 to update the prev pointer of the next node, following the
same scheme as for the PushLeft operation.

The PopLeft operation, see Figure 7.9, tries to delete and return the

12 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure PushLeft(value: pointer to word)
L1 node:=CreateNode(value);
L2 prev:=COPY NODE(head);
L3 next:=READ NODE(&prev.next);
L4 while true do
L5 if prev.next �= 〈next,false〉 then
L6 RELEASE NODE(next);
L7 next:=READ NODE(&prev.next);
L8 continue;
L9 node.prev:=〈prev,false〉;
L10 node.next:=〈next,false〉;
L11 if CAS(&prev.next,〈next,false〉,〈node,false〉) then
L12 COPY NODE(node);
L13 break;
L14 Back-Off
L15 PushCommon(node,next);

Figure 7.7: The algorithm for the PushLeft operation.

value of the leftmost node in the deque. The algorithm first repeatedly
tries in lines PL2-PL22 to mark the leftmost node (node) as deleted. Before
trying to update the next pointer, it first assures in line PL4 that the deque
is not empty, and secondly in line PL9 that the node is not already marked
for deletion. If the deque was detected to be empty, the function returns. If
node was marked for deletion, it tries to update the next pointer of the prev
node by calling the HelpDelete function, and then node is updated to be the
leftmost node. If the prev pointer of node was incorrect, it tries to update
it by calling the HelpInsert function. After the node has been successfully
marked by the successful CAS operation in line PL13, it tries in line PL14 to
update the next pointer of the prev node by calling the HelpDelete function,
and in line PL16 to update the prev pointer of the next node by calling the
HelpInsert function. After this, it tries in line PL23 to break possible cyclic
references that includes node by calling the RemoveCrossReference function.

The PopRight operation, see Figure 7.10, tries to delete and return the
value of the rightmost node in the deque. The algorithm first repeatedly tries
in lines PR2-PR19 to mark the rightmost node (node) as deleted. Before
trying to update the next pointer, it assures i) in line PR4 that the node is
not already marked for deletion, ii) in the same line that the prev pointer
of the tail (next) node is correct, and iii) in line PR7 that the deque is
not empty. If the deque was detected to be empty, the function returns.
If node was marked for deletion or the prev pointer of the next node was

7.3. THE ALGORITHM 13

procedure PushRight(value: pointer to word)
R1 node:=CreateNode(value);
R2 next:=COPY NODE(tail);
R3 prev:=READ NODE(&next.prev);
R4 while true do
R5 if prev.next �= 〈next,false〉 then
R6 prev:=HelpInsert(prev,next);
R7 continue;
R8 node.prev:=〈prev,false〉;
R9 node.next:=〈next,false〉;
R10 if CAS(&prev.next,〈next,false〉,〈node,false〉) then
R11 COPY NODE(node);
R12 break;
R13 Back-Off
R14 PushCommon(node,next);

procedure PushCommon(node, next: pointer to Node)
P1 while true do
P2 link1:=next.prev;
P3 if link1.d = true or node.next �= 〈next,false〉 then
P4 break;
P5 if CAS(&next.prev,link1,〈node,false〉) then
P6 COPY NODE(node);
P7 RELEASE NODE(link1.p);
P8 if node.prev.d = true then
P9 prev2:=COPY NODE(node);
P10 prev2:=HelpInsert(prev2,next);
P11 RELEASE NODE(prev2);
P12 break;
P13 Back-Off
P14 RELEASE NODE(next);
P15 RELEASE NODE(node);

Figure 7.8: The algorithm for the PushRight operation.

14 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

function PopLeft(): pointer to word
PL1 prev:=COPY NODE(head);
PL2 while true do
PL3 node:=READ NODE(&prev.next);
PL4 if node = tail then
PL5 RELEASE NODE(node);
PL6 RELEASE NODE(prev);
PL7 return ⊥;
PL8 link1:=node.next;
PL9 if link1.d = true then
PL10 HelpDelete(node);
PL11 RELEASE NODE(node);
PL12 continue;
PL13 if CAS(&node.next,link1,〈link1.p,true〉) then
PL14 HelpDelete(node);
PL15 next:=READ DEL NODE(&node.next);
PL16 prev:=HelpInsert(prev,next);
PL17 RELEASE NODE(prev);
PL18 RELEASE NODE(next);
PL19 value:=node.value;
PL20 break;
PL21 RELEASE NODE(node);
PL22 Back-Off
PL23 RemoveCrossReference(node);
PL24 RELEASE NODE(node);
PL25 return value;

Figure 7.9: The algorithm for the PopLeft function.

7.3. THE ALGORITHM 15

function PopRight(): pointer to word
PR1 next:=COPY NODE(tail);
PR2 node:=READ NODE(&next.prev);
PR3 while true do
PR4 if node.next �= 〈next,false〉 then
PR5 node:=HelpInsert(node,next);
PR6 continue;
PR7 if node = head then
PR8 RELEASE NODE(node);
PR9 RELEASE NODE(next);
PR10 return ⊥;
PR11 if CAS(&node.next,〈next,false〉,〈next,true〉) then
PR12 HelpDelete(node);
PR13 prev:=READ DEL NODE(&node.prev);
PR14 prev:=HelpInsert(prev,next);
PR15 RELEASE NODE(prev);
PR16 RELEASE NODE(next);
PR17 value:=node.value;
PR18 break;
PR19 Back-Off
PR20 RemoveCrossReference(node);
PR21 RELEASE NODE(node);
PR22 return value;

Figure 7.10: The algorithm for the PopRight function.

16 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

incorrect, it tries to update the prev pointer of the next node by calling
the HelpInsert function, and then node is updated to be the rightmost node.
After the node has been successfully marked it follows the same scheme as
the PopLeft operation.

7.3.4 Helping and Back-Off

The HelpDelete sub-procedure, see Figure 7.11, tries to set the deletion
mark of the prev pointer and then atomically update the next pointer of
the previous node of the to-be-deleted node, thus fulfilling step 2 and 3 of
the overall node deletion scheme. The algorithm first ensures in line HD1-
HD4 that the deletion mark on the prev pointer of the given node is set. It
then repeatedly tries in lines HD8-HD34 to delete (in the sense of a chain of
next pointers starting from the head node) the given marked node (node) by
changing the next pointer from the previous non-marked node. First, we can
safely assume that the next pointer of the marked node is always referring to
a node (next) to the right and the prev pointer is always referring to a node
(prev) to the left (not necessarily the first). Before trying to update the next
pointer with the CAS operation in line HD30, it assures in line HD9 that
node is not already deleted, in line HD10 that the next node is not marked,
in line HD16 that the prev node is not marked, and in HD24 that prev is the
previous node of node. If next is marked, it is updated to be the next node.
If prev is marked we might need to delete it before we can update prev to
one of its previous nodes and proceed with the current deletion, but in order
to avoid unnecessary and even possibly infinite recursion, HelpDelete is only
called if a next pointer from a non-marked node to prev has been observed
(i.e. lastlink.d is false). Otherwise if prev is not the previous node of node
it is updated to be the next node.

The HelpInsert sub-function, see Figure 7.12, tries to update the prev
pointer of a node and then return a reference to a possibly direct previous
node, thus fulfilling step 2 of the overall insertion scheme or step 4 of the
overall deletion scheme. The algorithm repeatedly tries in lines HI2-HI27 to
correct the prev pointer of the given node (node), given a suggestion of a
previous (not necessarily the directly previous) node (prev). Before trying
to update the prev pointer with the CAS operation in line HI22, it assures
in line HI4 that the prev node is not marked, in line HI13 that node is
not marked, and in line HI16 that prev is the previous node of node. If
prev is marked we might need to delete it before we can update prev to one
of its previous nodes and proceed with the current insertion, but in order
to avoid unnecessary recursion, HelpDelete is only called if a next pointer

7.3. THE ALGORITHM 17

procedure HelpDelete(node: pointer to Node)
HD1 while true do
HD2 link1:=node.prev;
HD3 if link1.d = true or
HD4 CAS(&node.prev,link1,〈link1.p,true〉) then break;
HD5 lastlink.d:=true;
HD6 prev:=READ DEL NODE(&node.prev);
HD7 next:=READ DEL NODE(&node.next);
HD8 while true do
HD9 if prev = next then break;
HD10 if next.next.d = true then
HD11 next2:=READ DEL NODE(&next.next);
HD12 RELEASE NODE(next);
HD13 next:=next2;
HD14 continue;
HD15 prev2:=READ NODE(&prev.next);
HD16 if prev2 = NULL then
HD17 if lastlink.d = false then
HD18 HelpDelete(prev);
HD19 lastlink.d:=true;
HD20 prev2:=READ DEL NODE(&prev.prev);
HD21 RELEASE NODE(prev);
HD22 prev:=prev2;
HD23 continue;
HD24 if prev2 �= node then
HD25 lastlink.d:=false;
HD26 RELEASE NODE(prev);
HD27 prev:=prev2;
HD28 continue;
HD29 RELEASE NODE(prev2);
HD30 if CAS(&prev.next,〈node,false〉,〈next,false〉) then
HD31 COPY NODE(next);
HD32 RELEASE NODE(node);
HD33 break;
HD34 Back-Off
HD35 RELEASE NODE(prev);
HD36 RELEASE NODE(next);

Figure 7.11: The algorithm for the HelpDelete sub-operation.

18 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

function HelpInsert(prev, node: pointer to Node)
:pointer to Node

HI1 lastlink.d:=true;
HI2 while true do
HI3 prev2:=READ NODE(&prev.next);
HI4 if prev2 = NULL then
HI5 if lastlink.d = false then
HI6 HelpDelete(prev);
HI7 lastlink.d:=true;
HI8 prev2:=READ DEL NODE(&prev.prev);
HI9 RELEASE NODE(prev);
HI10 prev:=prev2;
HI11 continue;
HI12 link1:=node.prev;
HI13 if link1.d = true then
HI14 RELEASE NODE(prev2);
HI15 break;
HI16 if prev2 �= node then
HI17 lastlink.d:=false;
HI18 RELEASE NODE(prev);
HI19 prev:=prev2;
HI20 continue;
HI21 RELEASE NODE(prev2);
HI22 if CAS(&node.prev,link1,〈prev,false〉) then
HI23 COPY NODE(prev);
HI24 RELEASE NODE(link1.p);
HI25 if prev.prev.d = true then continue;
HI26 break;
HI27 Back-Off
HI28 return prev;

Figure 7.12: The algorithm for the HelpInsert sub-function.

7.3. THE ALGORITHM 19

from a non-marked node to prev has been observed (i.e. lastlink.d is false).
If node is marked, the procedure is aborted. Otherwise if prev is not the
previous node of node it is updated to be the next node. If the update in
line HI22 succeeds, there is though the possibility that the prev node was
deleted (and thus the prev pointer of node was possibly already updated by
the concurrent Pop operation) directly before the CAS operation. This is
detected in line HI25 and then the update is possibly retried with a new
prev node.

Because the HelpDelete and HelpInsert are often used in the algorithm
for “helping” late operations that might otherwise stop progress of other
concurrent operations, the algorithm is suitable for pre-emptive as well as
fully concurrent systems. In fully concurrent systems though, the helping
strategy as well as heavy contention on atomic primitives, can downgrade
the performance significantly. Therefore the algorithm, after a number of
consecutive failed CAS operations (i.e. failed attempts to help concurrent
operations) puts the current operation into back-off mode. When in back-off
mode, the thread does nothing for a while, and in this way avoids disturb-
ing the concurrent operations that might otherwise progress slower. The
duration of the back-off is initialized to some value (e.g. proportional to the
number of threads) at the start of an operation, and for each consecutive
entering of the back-off mode during one operation invocation, the duration
of the back-off is changed using some scheme, e.g. increased exponentially.

7.3.5 Avoiding Cyclic Garbage

The RemoveCrossReference sub-procedure, see Figure 7.13, tries to break
cross-references between the given node (node) and any of the nodes that
it references, by repeatedly updating the prev and next pointer as long as
they reference a marked node. First, we can safely assume that the prev or
next field of node is not concurrently updated by any other operation, as
this procedure is only called by the main operation that deleted the node
and both the next and prev pointers are marked and thus any concurrent
update using CAS will fail. Before the procedure is finished, it assures in
line RC3 that the previous node (prev) is not marked, and in line RC9 that
the next node (next) is not marked. As long as prev is marked it is traversed
to the left, and as long as next is marked it is traversed to the right, while
continuously updating the prev or next field of node in lines RC5 or RC11.

20 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure RemoveCrossReference(node: pointer to Node)
RC1 while true do
RC2 prev:=node.prev.p;
RC3 if prev.next.d = true then
RC4 prev2:=READ DEL NODE(&prev.prev);
RC5 node.prev:=〈prev2,true〉;
RC6 RELEASE NODE(prev);
RC7 continue;
RC8 next:=node.next.p;
RC9 if next.next.d = true then
RC10 next2:=READ DEL NODE(&next.next);
RC11 node.next:=〈next2,true〉;
RC12 RELEASE NODE(next);
RC13 continue;
RC14 break;

Figure 7.13: The algorithm for the RemoveCrossReference sub-operation.

7.4 Correctness Proof

In this section we present the correctness proof of our algorithm. We first
prove that our algorithm is a linearizable one [12] and then we prove that it
is lock-free. A set of definitions that will help us to structure and shorten the
proof is first described in this section. We start by defining the sequential
semantics of our operations and then introduce two definitions concerning
concurrency aspects in general.

Definition 1 We denote with Qt the abstract internal state of a deque at
the time t. Qt = [v1, . . . , vn] is viewed as an list of values v, where |Qt| ≥
0. The operations that can be performed on the deque are PushLeft(L),
PushRight(R), PopLeft(PL) and PopRight(PR). The time t1 is defined as
the time just before the atomic execution of the operation that we are look-
ing at, and the time t2 is defined as the time just after the atomic execution
of the same operation. In the following expressions that define the sequen-
tial semantics of our operations, the syntax is S1 : O1, S2, where S1 is the
conditional state before the operation O1, and S2 is the resulting state after
performing the corresponding operation:

Qt1 : L(v1), Qt2 = [v1] + Qt1 (7.1)

7.4. CORRECTNESS PROOF 21

Qt1 : R(v1), Qt2 = Qt1 + [v1] (7.2)

Qt1 = ∅ : PL() = ⊥, Qt2 = ∅ (7.3)

Qt1 = [v1] + Q1 : PL() = v1, Qt2 = Q1 (7.4)

Qt1 = ∅ : PR() = ⊥, Qt2 = ∅ (7.5)

Qt1 = Q1 + [v1] : PR() = v1, Qt2 = Q1 (7.6)

Definition 2 In a global time model each concurrent operation Op “occu-
pies” a time interval [bOp, fOp] on the linear time axis (bOp < fOp). The
precedence relation (denoted by ‘→’) is a relation that relates operations of
a possible execution, Op1 → Op2 means that Op1 ends before Op2 starts.
The precedence relation is a strict partial order. Operations incomparable
under → are called overlapping. The overlapping relation is denoted by ‖
and is commutative, i.e. Op1 ‖ Op2 and Op2 ‖ Op1. The precedence re-
lation is extended to relate sub-operations of operations. Consequently, if
Op1 → Op2, then for any sub-operations op1 and op2 of Op1 and Op2, re-
spectively, it holds that op1 → op2. We also define the direct precedence
relation →d, such that if Op1→dOp2, then Op1 → Op2 and moreover there
exists no operation Op3 such that Op1 → Op3 → Op2.

Definition 3 In order for an implementation of a shared concurrent data
object to be linearizable [12], for every concurrent execution there should
exist an equal (in the sense of the effect) and valid (i.e. it should respect the
semantics of the shared data object) sequential execution that respects the
partial order of the operations in the concurrent execution.

Next we are going to study the possible concurrent executions of our
implementation. First we need to define the interpretation of the abstract
internal state of our implementation.

Definition 4 The value v is present (∃i.Q[i] = v) in the abstract internal
state Q of our implementation, when there is a connected chain of next
pointers (i.e. prev.next) from a present node (or the head node) in the
doubly linked list that connects to a node that contains the value v, and this
node is not marked as deleted (i.e. node.next.d=false).

22 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

Definition 5 The decision point of an operation is defined as the atomic
statement where the result of the operation is finitely decided, i.e. indepen-
dent of the result of any sub-operations after the decision point, the operation
will have the same result. We define the state-read point of an operation
to be the atomic statement where a sub-state of the priority queue is read,
and this sub-state is the state on which the decision point depends. We also
define the state-change point as the atomic statement where the operation
changes the abstract internal state of the priority queue after it has passed
the corresponding decision point.

We will now use these points in order to show the existence and location
in execution history of a point where the concurrent operation can be viewed
as it occurred atomically, i.e. the linearizability point.

Lemma 1 A PushRight operation (R(v)), takes effect atomically at one
statement.

Proof: The decision, state-read and state-change point for a PushRight
operation which succeeds (R(v)), is when the CAS sub-operation in line
R10 (see Figure 7.8) succeeds. The state of the deque was (Qt1 = Q1)
directly before the passing of the decision point. The prev node was the
very last present node as it pointed (verified by R5 and the CAS in R10)
to the tail node directly before the passing of the decision point. The state
of the deque directly after passing the decision point will be Qt2 = Q1 + [v]
as the next pointer of the prev node was changed to point to the new node
which contains the value v. Consequently, the linearizability point will be
the CAS sub-operation in line R10. �

Lemma 2 A PushLeft operation (L(v)), takes effect atomically at one state-
ment.

Proof: The decision, state-read and state-change point for a PushLeft op-
eration which succeeds (L(v)), is when the CAS sub-operation in line L11
(see Figure 7.7) succeeds. The state of the deque was (Qt1 = Q1) directly
before the passing of the decision point. The state of the deque directly after
passing the decision point will be Qt2 = [v] + Q1 as the next pointer of the
head node was changed to point to the new node which contains the value
v. Consequently, the linearizability point will be the CAS sub-operation in
line L11. �

7.4. CORRECTNESS PROOF 23

Lemma 3 A PopRight operation which fails (PR() = ⊥), takes effect atom-
ically at one statement.

Proof: The decision point for a PopRight operation which fails (PR() = ⊥)
is the check in line PR7. Passing of the decision point together with the
verification in line PR4 gives that the next pointer of the head node must
have been pointing to the tail node (Qt1 = ∅) directly before the read sub-
operation of the prev field in line PR2 or the next field in line HI3, i.e. the
state-read point. Consequently, the linearizability point will be the read
sub-operation in line PR2 or line HI3. �

Lemma 4 A PopRight operation which succeeds (PR() = v), takes effect
atomically at one statement.

Proof: The decision point for a PopRight operation which succeeds (PR() =
v) is when the CAS sub-operation in line PR11 succeeds. Passing of the
decision point together with the verification in line PR4 gives that the next
pointer of the to-be-deleted node must have been pointing to the tail node
(Qt1 = Q1 + [v]) directly before the CAS sub-operation in line PR11, i.e.
the state-read point. Directly after passing the CAS sub-operation (i.e.
the state-change point) the to-be-deleted node will be marked as deleted
and therefore not present in the deque (Qt2 = Q1). Consequently, the
linearizability point will be the CAS sub-operation in line PR11. �

Lemma 5 A PopLeft operation which fails (PL() = ⊥), takes effect atom-
ically at one statement.

Proof: The decision point for a PopLeft operation which fails (PL() = ⊥)
is the check in line PL4. Passing of the decision point gives that the next
pointer of the head node must have been pointing to the tail node (Qt1 = ∅)
directly before the read sub-operation of the next pointer in line PL3, i.e.
the state-read point. Consequently, the linearizability point will be the read
sub-operation of the next pointer in line PL3. �

Lemma 6 A PopLeft operation which succeeds (PL() = v), takes effect
atomically at one statement.

Proof: The decision point for a PopLeft operation which succeeds (PL() =
v) is when the CAS sub-operation in line PL13 succeeds. Passing of the
decision point together with the verification in line PL9 gives that the next

24 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

pointer of the head node must have been pointing to the present to-be-
deleted node (Qt1 = [v] + Q1) directly before the read sub-operation of the
next pointer in line PL3, i.e. the state-read point. Directly after passing
the CAS sub-operation in line PL13 (i.e. the state-change point) the to-
be-deleted node will be marked as deleted and therefore not present in the
deque (¬∃i.Qt2 [i] = v). Unfortunately this does not match the semantic
definition of the operation.

However, none of the other concurrent operations linearizability points is
dependent on the to-be-deleted node’s state as marked or not marked during
the time interval from the state-read to the state-change point. Clearly,
the linearizability points of Lemmas 1 and 2 are independent as the to-be-
deleted node would be part (or not part if not present) of the corresponding
Q1 terms. The linearizability points of Lemmas 3 and 5 are independent, as
those linearizability points depend on the head node’s next pointer pointing
to the tail node or not. Finally, the linearizability points of Lemma 4 as well
as this lemma are independent, as the to-be-deleted node would be part (or
not part if not present) of the corresponding Q1 terms, otherwise the CAS
sub-operation in line PL13 of this operation would have failed.

Therefore all together, we could safely interpret the to-be-deleted node
to be not present already directly after passing the state-read point ((Qt2 =
Q1). Consequently, the linearizability point will be the read sub-operation
of the next pointer in line PL3. �

Lemma 7 When the deque is idle (i.e. no operations are being performed),
all next pointers of present nodes are matched with a correct prev pointer
from the corresponding present node (i.e. all linked nodes from the head or
tail node are present in the deque).

Proof: We have to show that each operation takes responsibility for that the
affected prev pointer will finally be correct after changing the corresponding
next pointer. After successfully changing the next pointer in the PushLeft
(PushRight) in line L11 (R10) operation, the corresponding prev pointer is
tried to be changed in line P5 repeatedly until i) it either succeeds, ii) either
the next or this node is deleted as detected in line P3, iii) or a new node is
inserted as detected in line P3. If a new node is inserted the corresponding
PushLeft (PushRight) operation will make sure that the prev pointer is cor-
rected. If either the next or this node is deleted, the corresponding PopLeft
(PopRight) operation will make sure that the prev pointer is corrected. If
the prev pointer was successfully changed it is possible that this node was

7.4. CORRECTNESS PROOF 25

deleted before we changed the prev pointer of the next node. If this is de-
tected in line P8, then the prev pointer of the next node is corrected by the
HelpInsert function.

After successfully marking the to-be-deleted nodes in line PL13 (PR11),
the PopLeft (PopRight) functions will make sure that the connecting next
pointer of the prev node will be changed to point to the closest present node
to the right, by calling the HelpDelete procedure in line PL14 (PR12). It
will also make sure that the corresponding prev pointer of the next code will
be corrected by calling the HelpInsert function in line PL16 (PR14).

The HelpDelete procedure will repeatedly try to change the next pointer
of the prev node that points to the deleted node, until it either succeeds
changing the next pointer in line HD30 or some concurrent HelpDelete al-
ready succeeded as detected in line HD9.

The HelpInsert procedure will repeatedly try to change the prev pointer
of the node to match with the next pointer of the prev node, until it either
succeeds changing the prev pointer in line HI22 or the node is deleted as de-
tected in line HI13. If it succeeded with changing the prev pointer, the prev
node has possibly been deleted directly before changing the prev pointer,
and therefore it is detected if the prev node is marked in line HI25 and then
the procedure will continue trying to correctly change the prev pointer. �

Lemma 8 When the deque is idle, all previously deleted nodes are garbage
collected.

Proof: We have to show that each PopRight or PopLeft operation takes
responsibility for that the deleted node will finally have no references to it.
The possible references are caused by other nodes pointing to it. Following
Lemma 7 we know that no present nodes will reference the deleted node.
It remains to show that all paths of references from a deleted node will fi-
nally reference a present node, i.e. there are no cyclic referencing. After
the node is deleted in lines PL14 and PL16 (PR12 and PR14), it is assured
by the PopLeft (PopRight) operation by calling the RemoveCrossReference
procedure in line PL23 (PR20) that both the next and prev pointers are
pointing to a present node. If any of those present nodes are deleted before
the referencing deleted node is garbage collected in line PL24 (PR21), the
RemoveCrossReference procedures called by the corresponding PopLeft or
PopRight operation will assure that the next and prev pointers of the pre-
viously present node will point to present nodes, and so on recursively. The
RemoveCrossReference procedure repeatedly tries to change prev pointers to
point to the previous node of the referenced node until the referenced node

26 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

is present, detected in line RC3 and possibly changed in line RC5. The next
pointer is correspondingly detected in line RC9 and possibly changed in line
RC11. �

Lemma 9 The path of prev pointers from a node is always pointing a present
node that is left of the current node.

Proof: We will look at all possibilities where the prev pointer is set or
changed. The setting in line L9 (R8) is clearly to the left as it is verified by
L5 and L11 (R5 and R10). The change of the prev pointer in line P5 is to
the left as verified by P3 and that nodes are never moved relatively to each
other. The change of the prev pointer in line HI22 is to the left as verified
by line HI3 and HI16. Finally, the change of the prev pointer in line RC5 is
to the left as it is changed to the prev pointer of the previous node. �

Lemma 10 All operations will terminate if exposed to a limited number of
concurrent changes to the deque.

Proof: The amount of changes an operation could experience is limited.
Because of the reference counting, none of the nodes which are referenced
to by local variables can be garbage collected. When traversing through
prev or next pointers, the memory management guarantees atomicity of the
operations, thus no newly inserted or deleted nodes will be missed. We also
know that the relative positions of nodes that are referenced to by local
variables will not change as nodes are never moved in the deque. Most loops
in the operations retry because a change in the state of some node(s) was
detected in the ending CAS sub-operation, and then retry by re-reading
the local variables (and possibly correcting the state of the nodes) until no
concurrent changes was detected by the CAS sub-operation and therefore the
CAS succeeded and the loop terminated. Those loops will clearly terminate
after a limited number of concurrent changes. Included in that type of loops
are L4-L14, R4-R13, P1-P13, PL2-PL22 and PR3-PR19.

The loop HD8-HD34 will terminate if either the prev node is equal to
the next node in line HD9 or the CAS sub-operation in line HD30 succeeds.
From the start of the execution of the loop, we know that the prev node is
left of the to-be-deleted node which in turn is left of the next node. Follow-
ing from Lemma 9 this order will hold by traversing the prev node through
its prev pointer and traversing the next node through its next pointer. Con-
sequently, traversing the prev node through the next pointer will finally
cause the prev node to be directly left of the to-be-deleted node if this is

7.4. CORRECTNESS PROOF 27

not already deleted (and the CAS sub-operation in line HD30 will finally
succeed), otherwise the prev node will finally be directly left of the next
node (and in the next step the equality in line HD9 will hold). As long as
the prev node is marked it will be traversed to the left in line HD20, and if
it is the left-most marked node the prev node will be deleted by recursively
calling HelpDelete in line HD18. If the prev node is not marked it will be
traversed to the right. As there is a limited number of changes and thus
a limited number of marked nodes left of the to-be-deleted node, the prev
node will finally traverse to the right and either of the termination criteria
will be fulfilled.

The loop HI2-HI27 will terminate if either the to-be-corrected node is
marked in line HI13 or if the CAS sub-operation in line HI22 succeeds and
prev node is not marked. From the start of the execution of the loop, we
know that the prev node is left of the to-be-corrected node. Following from
Lemma 9 this order will hold by traversing the prev node through its prev
pointer. Consequently, traversing the prev node through the next pointer
will finally cause the prev node to be directly left of the to-be-corrected
node if this is not deleted (and the CAS sub-operation in line HI22 will
finally succeed), otherwise line HI13 will succeed. As long as the prev node
is marked it will be traversed to the left in line HI8, and if it is the left-most
marked node the prev node will be deleted by calling HelpDelete in line HI6.
If the prev node is not marked it will be traversed to the right. As there is a
limited number of changes and thus a limited number of marked nodes left
of the to-be-corrected node, the prev node will finally traverse to the right
and either of the termination criteria will be fulfilled.

The loop RC1-RC14 will terminate if both the prev node and the next
node of the to-be-deleted node is not marked in line RC3 respectively line
RC9. We know that from the start of the execution of the loop, the prev
node is left of the to-be-deleted node and the next node is right of the to-be-
deleted node. Following from Lemma 9, traversing the prev node through
the next pointer will finally reach a not marked node or the head node (which
is not marked), and traversing the next node through the next pointer will
finally reach a not marked node or the tail node (which is not marked), and
both of the termination criteria will be fulfilled. �

Lemma 11 With respect to the retries caused by synchronization, one oper-
ation will always do progress regardless of the actions by the other concurrent
operations.

28 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

Proof: We now examine the possible execution paths of our implemen-
tation. There are several potentially unbounded loops that can delay the
termination of the operations. We call these loops retry-loops. If we omit
the conditions that are because of the operations semantics (i.e. searching
for the correct criteria etc.), the loop retries when sub-operations detect
that a shared variable has changed value. This is detected either by a sub-
sequent read sub-operation or a failed CAS. These shared variables are only
changed concurrently by other CAS sub-operations. According to the def-
inition of CAS, for any number of concurrent CAS sub-operations, exactly
one will succeed. This means that for any subsequent retry, there must be
one CAS that succeeded. As this succeeding CAS will cause its retry loop
to exit, and our implementation does not contain any cyclic dependencies
between retry-loops that exit with CAS, this means that the corresponding
PushRight, PushLeft, PopRight or PopLeft operation will progress. Conse-
quently, independent of any number of concurrent operations, one operation
will always progress. �

Theorem 1 The algorithm implements a correct, memory stable, lock-free
and linearizable deque.

Proof: Following from Lemmas 1, 2, 3, 4, 5 and 6 and by using the respec-
tive linearizability points, we can create an identical (with the same seman-
tics) sequential execution that preserves the partial order of the operations
in a concurrent execution. Following from Definition 3, the implementation
is therefore linearizable.

Lemmas 10 and 11 give that our implementation is lock-free.
Following from Lemmas 10, 1, 2, 3, 4, 5 and 6 we can conclude that all

operations will terminate with the correct result.
Following from Lemma 8 we know that the maximum memory usage will

be proportional to the number of present values in the deque.
�

7.5 Experimental Evaluation

In our experiments, each concurrent thread performed 1000 randomly cho-
sen sequential operations on a shared deque, with a distribution of 1/4
PushRight, 1/4 PushLeft, 1/4 PopRight and 1/4 PopLeft operations. Each
experiment was repeated 50 times, and an average execution time for each
experiment was estimated. Exactly the same sequence of operations was

7.5. EXPERIMENTAL EVALUATION 29

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SUN Solaris, 4 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

Figure 7.14: Experiment with deques and high contention.

30 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SGI Mips, 29 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - SUN Solaris, 4 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

 1

 10

 100

 1000

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Threads

Deque with High Contention - Linux, 2 Processors

NEW ALGORITHM
MICHAEL

HAT-TRICK MUTEX
HAT-TRICK CASN

Figure 7.15: Experiment with deques and high contention, logarithmic
scales.

7.5. EXPERIMENTAL EVALUATION 31

performed for all different implementations compared. Besides our imple-
mentation, we also performed the same experiment with the lock-free im-
plementation by Michael [15] and the implementation by Martin et al. [13],
two of the most efficient lock-free deques that have been proposed. The
algorithm by Martin et al. [13] was implemented together with the corre-
sponding memory management scheme by Detlefs et al. [3]. However, as
both [13] and [3] use the atomic operation CAS2 which is not available in
any modern system, the CAS2 operation was implemented in software using
two different approaches. The first approach was to implement CAS2 using
mutual exclusion (as proposed in [13]), which should match the optimistic
performance of an imaginary CAS2 implementation in hardware. The other
approach was to implement CAS2 using one of the most efficient software
implementations of CASN known that could meet the needs of [13] and [3],
i.e. the implementation by Harris et al. [7].

A clean-cache operation was performed just before each sub-experiment
using a different implementation. All implementations are written in C and
compiled with the highest optimization level. The atomic primitives are
written in assembly language.

The experiments were performed using different number of threads, vary-
ing from 1 to 28 with increasing steps. Three different platforms were used,
with varying number of processors and level of shared memory distribution.
To get a highly pre-emptive environment, we performed our experiments on
a Compaq dual-processor Pentium II PC running Linux, and a Sun Ultra 80
system running Solaris 2.7 with 4 processors. In order to evaluate our algo-
rithm with full concurrency we also used a SGI Origin 2000 system running
Irix 6.5 with 29 250 MHz MIPS R10000 processors. The results from the
experiments are shown in Figure 7.14. The average execution time is drawn
as a function of the number of threads.

Our results show that both the CAS-based algorithms outperform the
CAS2-based implementations for any number of threads. For the systems
with low or medium concurrency and uniform memory architecture, [15]
has the best performance. However, for the system with full concurrency
and non-uniform memory architecture our algorithm performs significantly
better than [15] from 2 threads and more, as a direct consequence of the
nature of our algorithm to support parallelism for disjoint accesses.

32 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

7.6 General Operations for a Lock-Free Doubly
Linked List

In this section we provide the details for the general operations of a lock-
free doubly linked list, i.e. traversing the data structure in any direction
and inserting and deleting nodes at arbitrary positions. Note that the lin-
earizability points for these operations are defined without respect to the
deque operations8. For maintaining the current position we adopt the cur-
sor concept by Valois [20], that is basically just a reference to a node in the
list.

In order to be able to traverse through deleted nodes, we also have
to define the position of deleted nodes that is consistent with the normal
definition of position of active nodes for sequential linked lists.

Definition 6 The position of a cursor that references a node that is present
in the list is the referenced node. The position of a cursor that references
a deleted node, is represented by the node that was directly to the next of
the deleted node at the very moment of the deletion (i.e. the setting of the
deletion mark). If that node is deleted as well, the position is equal to the
position of a cursor referencing that node, and so on recursively. The actual
position is then interpreted to be at an imaginary node directly previous of
the representing node.

The Next function, see Figure 7.16, tries to change the cursor to the
next position relative to the current position, and returns the status of
success. The algorithm repeatedly in line NT2-NT11 checks the next node
for possible traversal until the found node is present and is not the tail
dummy node. If the current node is the tail dummy node, false is returned
in line NT2. In line NT3 the next pointer of the current node is de-referenced
and in line NT4 the deletion state of the found node is read. If the found
node is deleted and the current node was deleted when directly next of the
found node, this is detected in line NT5 and then the position is updated
according to Definition 6 in line NT10. If the found node was detected
as present in line NT5, the cursor is set to the found node in line NT10
and true is returned (unless the found node is the tail dummy node when
instead false is returned) in line NT11. Otherwise it is checked if the found

8The general doubly linked list operation and the deque operations are compatible in
the respect that the underlying data structure will be consistent. However, the lineariz-
ability point of the PopLeft operation is only defined with respect to the other deque
operations and not with respect to the genaral doubly linked list operations.

7.6. OPERATIONS FOR A LOCK-FREE DOUBLY LINKED LIST 33

function Next(cursor: pointer to pointer to Node): boolean
NT1 while true do
NT2 if *cursor = tail then return false;
NT3 next:=READ DEL NODE(&(*cursor).next);
NT4 d := next.next.d;
NT5 if d = true and (*cursor).next �= 〈next,true〉 then
NT6 if (*cursor).next.p = next then HelpDelete(next);
NT7 RELEASE NODE(next);
NT8 continue;
NT9 RELEASE NODE(*cursor);
NT10 *cursor:=next;
NT11 if d = false and next �= tail then return true;

Figure 7.16: The algorithm for the Next operation.

node is not already fully deleted in line NT6 and then fulfils the deletion
by calling the HelpDelete procedure after which the algorithm retries at line
NT2. The linearizability point of a Next function that succeeds is the read
sub-operation of the next pointer in line NT3. The linearizability point of
a Next function that fails is line NT2 if the node positioned by the original
cursor was the tail dummy node, and the read sub-operation of the next
pointer in line NT3 otherwise.

The Prev function, see Figure 7.17, tries to change the cursor to the
previous position relative to the current position, and returns the status
of success. The algorithm repeatedly in line PV2-PV11 checks the next
node for possible traversal until the found node is present and is not the
head dummy node. If the current node is the head dummy node, false is
returned in line PV2. In line PV3 the prev pointer of the current node is
de-referenced. If the found node is directly previous of the current node and
the current node is present, this is detected in line PV4 and then the cursor
is set to the found node in line PV6 and true is returned (unless the found
node is the head dummy node when instead false is returned) in line PV7.
If the current node is deleted then the cursor position is updated according
to Definition 6 by calling the Next function in line PV8. Otherwise the prev
pointer of the current node is updated by calling the HelpInsert function in
line PV10 after which the algorithm retries at line PV2. The linearizability
point of a Prev function that succeeds is the read sub-operation of the prev
pointer in line PV3. The linearizability point of a Prev function that fails is
line PV2 if the node positioned by the original cursor was the head dummy

34 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

function Prev(cursor: pointer to pointer to Node): boolean
PV1 while true do
PV2 if *cursor = head then return false;
PV3 prev:=READ DEL NODE(&(*cursor).prev);
PV4 if prev.next = 〈*cursor,false〉 and (*cursor).next.d = false then
PV5 RELEASE NODE(*cursor);
PV6 *cursor:=prev;
PV7 if prev �= head then return true;
PV8 else if (*cursor).next.d = true then Next(cursor);
PV9 else
PV10 prev:=HelpInsert(prev,*cursor);
PV11 RELEASE NODE(prev);

Figure 7.17: The algorithm for the Prev operation.

function Read(cursor: pointer to pointer to Node): pointer to word
RD1 if *cursor = head or *cursor = tail then return ⊥;
RD2 value:=(*cursor).value;
RD3 if (*cursor).next.d = true then return ⊥;
RD4 return value;

Figure 7.18: The algorithm for the Read function.

node, and the read sub-operation of the prev pointer in line PV3 otherwise.
The Read function, see Figure 7.18, returns the current value of the node

referenced by the cursor, unless this node is deleted or the node is equal to
any of the dummy nodes when the function instead returns a non-value. In
line RD1 the algorithm checks if the node referenced by the cursor is either
the head or tail dummy node, and then returns a non-value. The value of
the node is read in line RD2, and in line RD3 it is checked if the node is
deleted and then returns a non-value, otherwise the value is returned in line
RD4. The linearizability point of a Read function that returns a value is
the read sub-operation of the next pointer in line RD3. The linearizability
point of a Read function that returns a non-value is the read sub-operation
of the next pointer in line RD3, unless the node positioned by the cursor
was the head or tail dummy node when the linearizability point is line RD1.

The InsertBefore operation, see Figure 7.19, inserts a new node directly
before the node positioned by the given cursor and later changes the cursor
to position the inserted node. If the node positioned by the cursor is the head
dummy node, the new node will be inserted directly after the head dummy

7.6. OPERATIONS FOR A LOCK-FREE DOUBLY LINKED LIST 35

procedure InsertBefore(cursor: pointer to pointer to Node,
value: pointer to word)

IB1 if *cursor = head then return InsertAfter(cursor,value);
IB2 node:=CreateNode(value);
IB3 while true do
IB4 if (*cursor).next.d = true then Next(cursor);
IB5 prev:=READ DEL NODE(&(*cursor).prev);
IB6 node.prev:=〈prev,false〉;
IB7 node.next:=〈(*cursor),false〉;
IB8 if CAS(&prev.next,〈(*cursor),false〉,〈node,false〉) then
IB9 COPY NODE(node);
IB10 break;
IB11 if prev.next �= 〈(*cursor),false〉 then prev:=HelpInsert(prev,*cursor);
IB12 RELEASE NODE(prev);
IB13 Back-Off
IB14 next:=(*cursor);
IB15 *cursor:=COPY NODE(node);
IB16 node:=HelpInsert(node,next);
IB17 RELEASE NODE(node);
IB18 RELEASE NODE(next);

Figure 7.19: The algorithm for the InsertBefore operation.

node. The algorithm checks in line IB1 if the cursor position is equal to the
head dummy node, and consequently then calls the InsertAfter operation to
insert the new node directly after the head dummy node. The algorithm
repeatedly tries in lines IB4-IB13 to insert the new node (node) between
the previous node (prev) of the cursor and the cursor positioned node, by
atomically changing the next pointer of the prev node to instead point to
the new node. If the node positioned by the cursor is deleted this is detected
in line IB4 and the cursor is updated by calling the Next function. If the
update of the next pointer of the prev node by using the CAS operation in
line IB8 fails, this is because either the prev node is no longer the directly
previous node of the cursor positioned node, or that the cursor positioned
node is deleted. If the prev node is no longer the directly previous node this
is detected in line IB11 and then the HelpInsert function is called in order
to update the prev pointer of the cursor positioned node. If the update
using CAS in line IB8 succeeds, the cursor position is set to the new node
in line IB15 and the prev pointer of the previous cursor positioned node is
updated by calling the HelpInsert function in line IB16. The linearizability

36 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

procedure InsertAfter(cursor: pointer to pointer to Node,
value: pointer to word)

IA1 if *cursor = tail then return InsertBefore(cursor,value);
IA2 node:=CreateNode(value);
IA3 while true do
IA4 next:=READ DEL NODE(&(*cursor).next);
IA5 node.prev:=〈(*cursor),false〉;
IA6 node.next:=〈next,false〉;
IA7 if CAS(&(*cursor).next,〈next,false〉,〈node,false〉) then
IA8 COPY NODE(node);
IA9 break;
IA10 RELEASE NODE(next);
IA11 if (*cursor).next.d = true then
IA12 RELEASE NODE(node);
IA13 return InsertBefore(cursor,value);
IA14 Back-Off
IA15 *cursor:=COPY NODE(node);
IA16 node:=HelpInsert(node,next);
IA17 RELEASE NODE(node);
IA18 RELEASE NODE(next);

Figure 7.20: The algorithm for the InsertAfter operation.

point of the InsertBefore operation is the successful CAS operation in line
IB8, or equal to the linearizability point of the InsertBefore operation if that
operation was called in line IB1.

The InsertAfter operation, see Figure 7.20, inserts a new node directly
after the node positioned by the given cursor and later changes the cursor
to position the inserted node. If the node positioned by the cursor is the tail
dummy node, the new node will be inserted directly before the tail dummy
node. The algorithm checks in line IA1 if the cursor position is equal to the
tail dummy node, and consequently then calls the InsertBefore operation to
insert the new node directly after the head dummy node. The algorithm
repeatedly tries in lines IA4-IA14 to insert the new node (node) between the
cursor positioned node and the next node (next) of the cursor, by atomically
changing the next pointer of the cursor positioned node to instead point to
the new node. If the update of the next pointer of the cursor positioned
node by using the CAS operation in line IA7 fails, this is because either
the next node is no longer the directly next node of the cursor positioned
node, or that the cursor positioned node is deleted. If the cursor positioned

7.6. OPERATIONS FOR A LOCK-FREE DOUBLY LINKED LIST 37

function Delete(cursor: pointer to pointer to Node): pointer to word
D1 if *cursor = head or *cursor = tail then return ⊥;
D2 while true do
D3 link1:=(*cursor).next;
D4 if link1.d = true then return ⊥;
D5 if CAS(&(*cursor).next,link1,〈link1.p,true〉) then
D6 HelpDelete(*cursor);
D7 prev:=COPY NODE((*cursor).prev.p);
D8 prev:=HelpInsert(prev,link1.p);
D9 RELEASE NODE(prev);
D10 value:=(*cursor).value;
D11 RemoveCrossReference(*cursor);
D12 return value;

Figure 7.21: The algorithm for the Delete function.

node is deleted, the operation to insert directly after the cursor position now
becomes the problem of inserting directly before the node that represents
the cursor position according to Definition 6. It is detected in line IA11
if the cursor positioned node is deleted and then it calls the InsertBefore
operation in line IA13. If the update using CAS in line IA7 succeeds, the
cursor position is set to the new node in line IA15 and the prev pointer
of the previous cursor positioned node is updated by calling the HelpInsert
function in line IA16. The linearizability point of the InsertAfter operation
is the successful CAS operation in line IA7, or equal to the linearizability
point of the InsertAfter operation if that operation was called in line IA1 or
IA13.

The Delete operation, see Figure 7.21, tries to delete the non-dummy
node referenced by the given cursor and returns the value if successful, oth-
erwise a non-value is returned. If the cursor positioned node is equal to any
of the dummy nodes this is detected in line D1 and a non-value is returned.
The algorithm repeatedly tries in line D3-D5 to set the deletion mark of the
next pointer of the cursor positioned node. If the deletion mark is already
set, this is detected in line D4 and a non-value is returned. If the CAS op-
eration in line D5 succeeds, the deletion process is completed by calling the
HelpDelete procedure in line D6 and the HelpInsert function in line D8. In
order to avoid possible problems with cyclic garbage the RemoveCrossRefer-
ence procedure is called in line D11. The value of the deleted node is read
in line D10 and the value returned in line D12. The linearizability point
of a Delete function that returns a value is the successful CAS operation in

38 CHAPTER 7. LOCK-FREE DEQUE AND DOUBLY LINKED LIST

line D5. The linearizability point of a Delete function that returns a non-
value is the the read sub-operation of the next pointer in line D3, unless the
node positioned by the cursor was the head or tail dummy node when the
linearizability point instead is line D1.

The remaining necessary functionality for initializing the cursor positions
like First() and Last() can be trivially derived by using the dummy nodes.
If an Update() functionality is necessary, this could easily be achieved by
extending the value field of the node data structure with a deletion mark,
and throughout the whole algorithm interpret the deletion state of the whole
node using this mark when semantically necessary, in combination with the
deletion marks on the next and prev pointers.

7.7 Conclusions

We have presented the first lock-free algorithmic implementation of a con-
current deque that has all the following features: i) it supports parallelism
for disjoint accesses, ii) uses a fully described lock-free memory management
scheme, iii) uses atomic primitives which are available in modern computer
systems, and iv) allows pointers with full precision to be used, and thus
supports dynamic deque sizes. In addition, the proposed solution also im-
plements all the fundamental operations of a general doubly linked list data
structure in a lock-free manner. The doubly linked list operations also sup-
port deterministic and well defined traversals through even deleted nodes,
and are therefore suitable for concurrent applications of linked lists in prac-
tice.

We have performed experiments that compare the performance of our al-
gorithm with two of the most efficient algorithms of lock-free deques known,
using full implementations of those algorithms. The experiments show that
our implementation performs significantly better on systems with high con-
currency and non-uniform memory architecture.

We believe that our implementation is of highly practical interest for
multi-processor applications. We are currently incorporating it into the
NOBLE [18] library.

Bibliography

[1] O. Agesen, D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and
G. L. Steele Jr., “DCAS-based concurrent deques,” in ACM Symposium on
Parallel Algorithms and Architectures, 2000, pp. 137–146.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for mul-
tiprogrammed multiprocessors,” in ACM Symposium on Parallel Algorithms
and Architectures, 1998, pp. 119–129.

[3] D. Detlefs, P. Martin, M. Moir, and G. Steele Jr, “Lock-free reference count-
ing,” in Proceedings of the 20th Annual ACM Symposium on Principles of
Distributed Computing, Aug. 2001.

[4] D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and G. L. Steele
Jr., “Even better DCAS-based concurrent deques,” in International Sympo-
sium on Distributed Computing, 2000, pp. 59–73.

[5] M. Greenwald, “Non-blocking synchronization and system design,” Ph.D. dis-
sertation, Stanford University, Palo Alto, CA, 1999.

[6] ——, “Two-handed emulation: how to build non-blocking implementations
of complex data-structures using DCAS,” in Proceedings of the twenty-first
annual symposium on Principles of distributed computing. ACM Press, 2002,
pp. 260–269.

[7] T. Harris, K. Fraser, and I. Pratt, “A practical multi-word compare-and-swap
operation,” in Proceedings of the 16th International Symposium on Distributed
Computing, 2002.

[8] T. L. Harris, “A pragmatic implementation of non-blocking linked lists,” in
Proceedings of the 15th International Symposium of Distributed Computing,
Oct. 2001, pp. 300–314.

[9] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming
Languages and Systems, vol. 11, no. 1, pp. 124–149, Jan. 1991.

[10] M. Herlihy, V. Luchangco, and M. Moir, “The repeat offender problem: A
mechanism for supporting dynamic-sized, lock-free data structure,” in Proceed-
ings of 16th International Symposium on Distributed Computing, Oct. 2002.

39

40 BIBLIOGRAPHY

[11] ——, “Obstruction-free synchronization: Double-ended queues as an exam-
ple,” in Proceedings of the 23rd International Conference on Distributed Com-
puting Systems, 2003.

[12] M. Herlihy and J. Wing, “Linearizability: a correctness condition for concur-
rent objects,” ACM Transactions on Programming Languages and Systems,
vol. 12, no. 3, pp. 463–492, 1990.

[13] P. Martin, M. Moir, and G. Steele, “DCAS-based concurrent deques supporting
bulk allocation,” Sun Microsystems, Tech. Rep. TR-2002-111, 2002.

[14] M. M. Michael, “Safe memory reclamation for dynamic lock-free objects us-
ing atomic reads and writes,” in Proceedings of the 21st ACM Symposium on
Principles of Distributed Computing, 2002, pp. 21–30.

[15] ——, “CAS-based lock-free algorithm for shared deques,” in Proceedings of
the 9th International Euro-Par Conference, ser. Lecture Notes in Computer
Science. Springer Verlag, Aug. 2003.

[16] M. M. Michael and M. L. Scott, “Correction of a memory management method
for lock-free data structures,” Computer Science Department, University of
Rochester, Tech. Rep., 1995.

[17] A. Silberschatz and P. Galvin, Operating System Concepts. Addison Wesley,
1994.

[18] H. Sundell and P. Tsigas, “NOBLE: A non-blocking inter-process communi-
cation library,” in Proceedings of the 6th Workshop on Languages, Compilers
and Run-time Systems for Scalable Computers, ser. Lecture Notes in Computer
Science. Springer Verlag, 2002.

[19] ——, “Lock-free and practical deques using single-word compare-and-swap,”
Computing Science, Chalmers University of Technology, Tech. Rep. 2004-02,
Mar. 2004.

[20] J. D. Valois, “Lock-free data structures,” Ph.D. dissertation, Rensselaer Poly-
technic Institute, Troy, New York, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

