
Counting Networks1James Aspnes y Maurice Herlihy z Nir Shavit xAugust 4, 1993AbstractMany fundamental multi-processor coordination problems can be expressed ascounting problems: processes must cooperate to assign successive values from agiven range, such as addresses in memory or destinations on an interconnectionnetwork. Conventional solutions to these problems perform poorly because ofsynchronization bottlenecks and high memory contention.Motivated by observations on the behavior of sorting networks, we o�er a newapproach to solving such problems, by introducing counting networks, a new classof networks that can be used to count. We give two counting network construc-tions, one of depth logn(1 + logn)=2 using n logn(1 + logn)=4 \gates," and asecond of depth log2 n using n log2 n=2 gates. These networks avoid the sequen-tial bottlenecks inherent to earlier solutions, and substantially lower the memorycontention.Finally, to show that counting networks are not merely mathematical creatures,we provide experimental evidence that they outperform conventional synchroniza-tion techniques under a variety of circumstances.1A preliminary version of this work appeared in the Proceedings of the 23rd ACM Symposium onthe Theory of Computing, New Orleans, May 1991.yIBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120. A large part of this workwas performed while the author was at Carnegie-Mellon University.zDigital Equipment Corporation, Cambridge Research Laboratory, One Kendall Square, Cambridge02139.xMIT Laboratory for Computer Science. Author's current address: Computer Science Department,School of Mathematics, Tel-Aviv University, Tel-Aviv 69978, Israel. This work was supported by ONRcontract N00014-91-J-1046, NSF grant CCR-8915206, DARPA contract N00014-89-J-1988, and by aRothschild postdoctoral fellowship. A large part of this work was performed while the author was atIBM's Almaden Research Center.Keywords: Counting Networks, Parallel Processing, Hot-Spots, Network Routing.0

1 IntroductionMany fundamental multi-processor coordination problems can be expressed as countingproblems: processors collectively assign successive values from a given range, such asaddresses in memory or destinations on an interconnection network. In this paper, weo�er a new approach to solving such problems, by introducing counting networks, a newclass of networks that can be used to count.Counting networks, like sorting networks [4, 7, 8], are constructed from simple two-input two-output computing elements called balancers, connected to one another bywires. However, while an n input sorting network sorts a collection of n input valuesonly if they arrive together, on separate wires, and propagate through the network inlockstep, a counting network can count any number N � n of input tokens even if theyarrive at arbitrary times, are distributed unevenly among the input wires, and propagatethrough the network asynchronously.Figure 2 provides an example of an execution of a 4-input, 4-output, counting net-work. A balancer is represented by two dots and a vertical line (see Figure 1). Intuitively,a balancer is just a toggle mechanism 1, alternately forwarding inputs to its top and bot-tom output wires. It thus balances the number of tokens on its output wires. In theexample of Figure 2, input tokens arrive on the network's input wires one after the other.For convenience we have numbered them by the order of their arrival (these numbers arenot used by the network). As can be seen, the �rst input (numbered 1) enters on line 2and leaves on line 1, the second leaves on line 2, and in general, the Nth token will leaveon line N mod 4. (The reader is encouraged to try this for him/herself.) Thus, if on theith output line the network assigns to consecutive outputs the numbers i; i+4; i+2 �4; ::,it is counting the number of input tokens without ever passing them all through a sharedcomputing element!Counting networks achieve a high level of throughput by decomposing interactionsamong processes into pieces that can be performed in parallel. This decompositionhas two performance bene�ts: It eliminates serial bottlenecks and reduces memorycontention. In practice, the performance of many shared-memory algorithms is oftenlimited by conicts at certain widely-shared memory locations, often called hot spots[30]. Reducing hot-spot conicts has been the focus of hardware architecture design[15, 16, 22, 29] and experimental work in software [5, 13, 14, 25, 27].Counting networks are also non-blocking: processes that undergo halting failuresor delays while using a counting network do not prevent other processes from makingprogress. This property is important because existing shared-memory architectures are1One can implement a balancer using a read-modify-write operation such as Compare & Swap, or ashort critical section. 1

themselves inherently asynchronous; process step times are subject to timing uncertain-ties due to variations in instruction complexity, page faults, cache misses, and operatingsystem activities such as preemption or swapping.Section 2 de�nes counting networks. In Sections 3 and 4, we give two distinct count-ing network constructions, each of depth less than or equal to log2 n, each using less thanor equal to (n log2 n)=2 balancers. To illustrate that counting networks are useful weuse counting networks to construct high-throughput shared-memory implementationsof concurrent data structures such as shared counters, producer/consumer bu�ers, andbarriers. A shared counter is simply an object that issues the numbers 0 to m � 1in response to m requests by processes. Shared counters are central to a number ofshared-memory synchronization algorithms (e.g., [10, 12, 16, 31]). A producer/consumerbu�er is a data structure in which items inserted by a pool of producer processes areremoved by a pool of consumer processes. A barrier is a data structure that ensuresthat no process advances beyond a particular point in a computation until all processeshave arrived at that point. Compared to conventional techniques such as spin locksor semaphores, our counting network implementations provide higher throughput, lessmemory contention, and better tolerance for failures and delays. The implementationscan be found in Section 5.Our analysis of the counting network construction is supported by experiment. InSection 6, we compare the performance of several implementations of shared counters,producer/consumer bu�ers, and barrier synchronization on a shared-memory multipro-cessor. When the level of concurrency is su�ciently high, the counting network imple-mentations outperform conventional implementations based on spin locks, sometimesdramatically. Finally, Section 7 describes how to mathematically verify that a givennetwork counts.In summary, counting networks represent a new class of concurrent algorithms. Theyhave a rich mathematical structure, they provide e�ective solutions to important prob-lems, and they perform well in practice. We believe that counting networks have otherpotential uses, for example as interconnection networks [32] or as load balancers[28], andthat they deserve further attention.2 Networks That Count2.1 Counting NetworksCounting networks belong to a larger class of networks called balancing networks, con-structed from wires and computing elements called balancers, in a manner similar to the2

x
x

0

1

 y =0

x + x0 1

2

1 y =
x + x0 1

2

balancer

7 6 4 2 1

5 3

1 3 5 7

2 4 6

input outputFigure 1: A Balancer.way in which comparison networks [8] are constructed from wires and comparators. Webegin by describing balancing networks.A balancer is a computing element with two input wires and two output wires2 (seeFigure 1). Tokens arrive on the balancer's input wires at arbitrary times, and are outputon its output wires. Intuitively, one may think of a balancer as a toggle mechanism, thatgiven a stream of input tokens, repeatedly sends one token to the top output wire andone to the bottom, e�ectively balancing the number of tokens that have been output onits output wires. We denote by xi; i 2 f0; 1g the number of input tokens ever receivedon the balancer's ith input wire, and similarly by yi; i 2 f0; 1g the number of tokens everoutput on its ith output wire. Throughout the paper we will abuse this notation anduse xi (yi) both as the name of the ith input (output) wire and a count of the numberof input tokens received on the wire.Let the state of a balancer at a given time be de�ned as the collection of tokens onits input and output wires. For the sake of clarity we will assume that tokens are alldistinct. We denote by the pair (t; b), the state transition in which the token t passesfrom an input wire to an output wire of the balancer b.We can now formally state the safety and liveness properties of a balancer:1. In any state x0 + x1 � y0 + y1 (i.e. a balancer never creates output tokens).2. Given any �nite number of input tokens m = x0 + x1 to the balancer, it is guar-anteed that within a �nite amount of time, it will reach a quiescent state, that is,one in which the sets of input and output tokens are the same. In any quiescentstate, x0 + x1 = y0 + y1 = m.3. In any quiescent state, y0 = dm=2e and y1 = bm=2c.A balancing network of width w is a collection of balancers, where output wires areconnected to input wires, having w designated input wires x0; x1; ::; xw�1 (which arenot connected to output wires of balancers), w designated output wires y0; y1; ::; yw�12In Figure 1 as well as in the sequel, we adopt the notation of [8] and and draw wires as horizontallines with balancers stretched vertically. 3

7 6 2

4 3 1

5

1 4

3

2 6

5 7

1 5

4 7

2 6

3

4

3 7

1 5 1 5

2 6
2 6

3 7

4

outputsinputs

Figure 2: A sequential execution for a Bitonic[4] counting network.(similarly unconnected), and containing no cycles. Let the state of a network at a giventime be de�ned as the union of the states of all its component balancers. The safetyand liveness of the network follow naturally from the above network de�nition and theproperties of balancers, namely, that it is always the case that Pw�1i=0 xi � Pw�1i=0 yi,and for any �nite sequence of m input tokens, within �nite time the network reaches aquiescent state, i.e. one in which Pw�1i=0 yi = m.It is important to note that we make no assumptions about the timing of token tran-sitions from balancer to balancer in the network | the network's behavior is completelyasynchronous. Although balancer transitions can occur concurrently, it is convenient tomodel them using an interleaving semantics in the style of Lynch and Tuttle [24]. An exe-cution of a network is a �nite sequence s0; e1; s1; : : : en; sn or in�nite sequence s0; e1; s1; : : :of alternating states and balancer transitions such that for each (si; ei+1; si+1), the tran-sition ei+1 carries state si to si+1. A schedule is the subsequence of transitions occurringin an execution. A schedule is valid if it is induced by some execution, and complete if itis induced by an execution which results in a quiescent state. A schedule s is sequentialif for any two transitions ei = (ti; bi) and ej = (tj; bj), where ti and tj are the sametoken, then all transitions between them also involve that token.On a shared memorymultiprocessor, a balancing network is implemented as a shareddata structure, where balancers are records, and wires are pointers from one record toanother. Each of the machine's asynchronous processors runs a program that repeatedlytraverses the data structure from some input pointer (either preassigned or chosen atrandom) to some output pointer, each time shepherding a new token through the network(see section 5).We de�ne the depth of a balancing network to be the maximal depth of any wire,where the depth of a wire is de�ned as 0 for a network input wire, andmax(depth(x0); depth(x1)) + 14

for the output wires of a balancer having input wires x0 and x1. We can thus formulatethe following straightforward yet useful lemma:Lemma 2.1 If the transition of a token from the input to the output by any balancer(including the time spent traversing the input wire) takes at most � time, then any inputtoken will exit the network within time at most � times the network depth.A counting network of width w is a balancing network whose outputs y0; ::; yw�1satisfy the following step property:In any quiescent state, 0 � yi � yj � 1 for any i < j.To illustrate this property, consider an execution in which tokens traverse the networksequentially, one completely after the other. Figure 2 shows such an execution on aBitonic[4] counting network which we will de�ne formally in Section 3. As can beseen, the network moves input tokens to output wires in increasing order modulo w.Balancing networks having this property are called counting networks because they caneasily be adapted to count the total number of tokens that have entered the network.Counting is done by adding a \local counter" to each output wire i, so that tokenscoming out of that wire are consecutively assigned numbers i; i+ w; : : : ; i + (yi � 1)w.(This application is described in greater detail in Section 5.)The step property can be de�ned in a number of ways which we will use interchange-ably. The connection between them is stated in the following lemma:Lemma 2.2 If y0; : : : ; yw�1 is a sequence of non-negative integers, the following state-ments are all equivalent:1. For any i < j, 0 � yi � yj � 1.2. Either yi = yj for all i; j, or there exists some c such that for any i < c and j � c,yi � yj = 1.3. If m =Pw�1i=0 yi, yi = lm�iw m.It is the third form of the step property that makes counting networks usable for count-ing. 5

Proof: We will prove that 3 implies 1, 1 implies 2, and 2 implies 3.For any indexes a < b, since 0 < a < b < w, it must be that 0 � lm�aw m� lm�bw m � 1.Thus 3 implies 1.Assume 1 holds for the sequence y0; : : : ; yw�1. If for every 0 � i < j � w, yi�yj = 0,then 2 follows. Otherwise, there exists the largest a such that there is a b for whicha < b and ya � yb = 1. From a's being largest we get that ya � ya+1 = 1, and from 1 weget yi = ya for any 0 � i � a and yi = ya+1 for any a+ 1 � i � w. Choosing c = a+ 1completes the proof. Thus 1 implies 2.Assume by way of contradiction that 3 does not hold and 2 does. Without loss ofgenerality, there thus exists the smallest a such that m = Pw�1i=0 yi and ya 6= lm�aw m. Ifya < lm�aw m, then since Pk�1i=0 yi = m, by simple arithmetic there must exist a b > a suchthat yb > lm�bw m. Since 0 � lm�aw m� lm�bw m � 1, yb � ya � 1, and no c as in 2 exists, acontradiction. Similarly, if ya > lm�aw m, there exists a b 6= a such that yb < lm�bw m, andya � yb � 2. Again no c as in 2 exists, a contradiction. Thus 2 implies 3.The requirement that a quiescent counting network's outputs have the step prop-erty might appear to tell us little about the behavior of a counting network during anasynchronous execution, but in fact it is surprisingly powerful. Even in a state in whichmany tokens are passing through the network, the network must eventually settle intoa quiescent state if no new tokens enter the network. This constraint makes it possibleto prove such important properties as the following:Lemma 2.3 Suppose that in a given execution a counting network with output sequencey0; : : : ; yw�1 is in a state where m tokens have entered the network and m0 tokens haveleft it. Then there exist non-negative integers di, 0 � i < w, such that Pw�1i=0 di = m�m0and yi + di = lm�iw m.Proof: Suppose not. There is some execution e for which the non-negative integers di,0 � i < w do not exist. If we extend e to a complete execution e0 allowing no additionaltokens to enter the network, then at the end of e0 the network will be in a quiescentstate where the step property does not hold, a contradiction.In a sequential execution, where tokens traverse the network one at a time, thenetwork is quiescent every time a token leaves. In this case the i-th token to enter willleave on output imod w. The lemma shows that in a concurrent, asynchronous execution6

bitonic[k/2]

bitonic[k/2]

merger[k]

x0
x
x
x
x
x
x
x

1

2

3

4

5

6

7

y0
y
y
y
y
y
y
y

1

2

3

4

5

6

7

����Figure 3: Recursive Structure of a Bitonic[8] Counting Network.of any counting network, any \gap" in this sequence of mod w counts corresponds totokens still traversing the network. This critical property holds in any execution, even ifquiescent states never occur, and even though the de�nition makes no explicit referenceto non-quiescent states.2.2 Counting vs. SortingA balancing network and a comparison network are isomorphic if one can be constructedfrom the other by replacing balancers by comparators or vice versa. The countingnetworks introduced in this paper are isomorphic to the Bitonic sorting network ofBatcher [7] and to the Periodic Balanced sorting network of Dowd, Perl, Rudolph andSaks [9]. There is a sense in which constructing counting networks is \harder" thanconstructing sorting networks:Theorem 2.4 If a balancing network counts, then its isomorphic comparison networksorts, but not vice versa.Proof: It is easy to verify that balancing networks isomorphic to the Even-Odd orInsertion sorting networks [8] are not counting networks.7

For the other direction, we construct a mapping from the comparison network tran-sitions to the isomorphic balancing network transitions.By the 0-1 principle [8], a comparison network which sorts all sequences of 0's and1's is a sorting network. Take any arbitrary sequence of 0's and 1's as inputs to thecomparison network, and for the balancing network place a token on each 0 input wireand no token on each 1 input wire. We now show that if we run both networks in lockstep,the balancing network will simulate the comparison network, that is, the correspondencebetween tokens and 0's holds.The proof is by induction on the depth of the network. For level 0 the claim holdsby construction. Assuming it holds for wires of a given level k, let us prove it holds forlevel k + 1. On every gate where two 0's meet in the comparison network, two tokensmeet in the balancing network, so one 0 leaves on each wire in the comparison networkon level k+1, and one token leaves on each line in the balancing network on level k+1.On every gate where two 1's meet in the comparison network, no tokens meet in thebalancing network, so a 1 leaves on each level k+1 wire in the comparison network, andno tokens leave in the balancing network. On every gate where a 0 and 1 meet in thecomparison network, the 0 leaves on the lower wire and the 1 on the upper wire on levelk + 1, while in the balancing network the token leaves on the lower wire, and no tokenleaves on the upper wire.If the balancing network is a counting network, i.e., it has the step property on itsoutput level wires, then the comparison network must have sorted the input sequenceof 0's and 1's.Corollary 2.5 The depth of any counting network is at least
(log n).Though in general a balancing network isomorphic to a sorting network is not guar-anteed to count, its outputs will always have the step property if the input sequencesatis�es the following smoothness property:A sequence x0; :::; xw�1 is smooth if for all i < j, jxi � xjj � 1.This observation is stated formally below:Theorem 2.6 If a balancing network is isomorphic to a sorting network, and its inputsequence is smooth, then its output sequence in any quiescent state has the step property.Proof: The proof follows along the lines of Theorem 2.4. We will show the resultby constructing a mapping, this time from the transitions of the balancing network8

to the transitions of the isomorphic sorting network. However, unlike in the proof ofTheorem 2.4, we will map sets of transitions of the balancing network to single transitionsof the isomorphic sorting network. We do this by considering the number of tokens thathave passed along each wire of a balancing network in an execution ending in a quiescentstate. From this perspective the transitions of a balancer gate can be mapped to those ofa mathematical device that receives integers x0 and x1 (numbers of tokens) and outputsintegers lx0+x12 m and jx0+x12 k.Given that the input sequence to the balancing network is smooth, there is a quantityx such that each input wire carries either x or x + 1 tokens. By simple induction onthe depth of the network, one can prove that the inputs and outputs of any balancer ina network with x or x + 1 tokens on each input wire, will have as outputs x or x + 1tokens, and that for a given balancer:1. If both input wires have x tokens, then both outputs will have x.2. If one input has x and the other has x + 1, then the output on the top wire willbe x+ 1 tokens and on the bottom wire it will be x tokens.3. If both input wires have x + 1 tokens, then both output wires will have x + 1tokens.This behavior, if one considers x and x + 1 as integers, maps precisely to that ofcomparators of numeric values in a comparison network. Consequently, in a quiescentstate of a balancing network isomorphic to a sorting network, if the network as a wholewas given a smooth input sequence, its output sequence must map to a sorted sequenceof integers x and x+ 1, implying that it has the step property.3 A Bitonic Counting NetworkNaturally, counting networks are interesting only if they can be constructed. In thissection we describe how to construct a counting network whose width is any power of2. The layout of this network is isomorphic to Batcher's famous Bitonic sorting network[7, 8], though its behavior and correctness arguments are completely di�erent. We givean inductive construction, as this will later aid us in proving its correctness.De�ne the width w balancing network Merger[w] as follows. It has two sequencesof inputs of length w=2, x and x0, and a single sequence of outputs y, of length w.Merger[w] will be constructed to guarantee that in a quiescent state where the se-quences x and x0 have the step property, y will also have the step property, a fact whichwill be proved in the next section. 9

x0
x
x
x
x
x
x
x

1

2

3

4

5

6

7

y0
y
y
y
y
y
y
y

1

2

3

4

5

6

7

Merger[8]Merger[8]

Merger[4]

x0
x1
x
x
2

3

x
x
4

5

x
x
6

7

y0
y1
y
y
2

3

y
y
4

5

y
y
6

7

Merger[4]Figure 4: A Merger [8] balancing network.We de�ne the network Merger[w] inductively (see example in Figure 4). Sincew is a power of 2, we will repeatedly use the notation 2k in place of w. When k isequal to 1, the Merger[2k] network consists of a single balancer. For k > 1, weconstruct theMerger[2k] network with input sequences x and x0 from twoMerger[k]networks and k balancers. Using aMerger[k] network we merge the even subsequencex0; x2; : : : ; xk�2 of x with the odd subsequence x01; x03; : : : ; x0k�1 of x0 (i.e., the sequencex0; : : : ; xk�2; x01; : : : ; x0k�1 is the input to the Merger[k] network) while with a secondMerger[k] network we merge the odd subsequence of x with the even subsequence ofx0. Call the outputs of these two Merger[k] networks z and z0. The �nal stage of thenetwork combines z and z0 by sending each pair of wires zi and z0i into a balancer whoseoutputs yield y2i and y2i+1.TheMerger[w] network consists of logw layers of w=2 balancers each. Merger[w]guarantees the step property on its outputs only when its inputs also have the stepproperty| but we can ensure this property by �ltering these inputs through smallercounting networks. We de�ne Bitonic[w] to be the network constructed by passingthe outputs from two Bitonic[w=2] networks into a Merger[w] network, where theinduction is grounded in theBitonic[1] network which contains no balancers and simplypasses its input directly to its output. This construction gives us a network consistingof �logw+12 � layers each consisting of w=2 balancers.3.1 Proof of CorrectnessIn this section we show that Bitonic[w] is a counting network. Before examining thenetwork itself, we present some simple lemmas about sequences having the step property.Lemma 3.1 If a sequence has the step property, then so do all its subsequences.10

Lemma 3.2 If x0; : : : ; xk�1 has the step property, then its even and odd subsequencessatisfy: k=2�1Xi=0 x2i = &k�1Xi=0 xi=2' and k=2�1Xi=0 x2i+1 = $k�1Xi=0 xi=2%Proof: Either x2i = x2i+1 for 0 � i < k=2, or by Lemma 2.2 there exists a uniquej such that x2j = x2j+1 + 1 and x2i = x2i+1 for all i 6= j, 0 � i < k=2. In the�rst case, P x2i = Px2i+1 = Pxi=2, and in the second case Px2i = dP xi=2e andPx2i+1 = bP xi=2c.Lemma 3.3 Let x0; : : : ; xk�1 and y0; : : : ; yk�1 be arbitrary sequences having the stepproperty. If Pk�1i=0 xi = Pk�1i=0 yi, then xi = yi for all 0 � i < k.Proof: Let m =P xi = P yi. By Lemma 2.2, xi = yi = lm�ik m.Lemma 3.4 Let x0; : : : ; xk�1 and y0; : : : ; yk�1 be arbitrary sequences having the stepproperty. If Pk�1i=0 xi = Pk�1i=0 yi + 1, then there exists a unique j, 0 � j < k, such thatxj = yj + 1, and xi = yi for i 6= j, 0 � i < k.Proof: Let m = Pxi = P yi + 1. By Lemma 2.2, xi = lm�ik m and yi = lm�1�ik m.These two terms agree for all i, 0 � i < k, except for the unique i such that i = m� 1(mod k).We now show that the Merger[w] networks preserves the step property.Lemma 3.5 If Merger[2k] is quiescent, and its inputs x0; : : : ; xk�1 and x00; : : : ; x0k�1both have the step property, then its outputs y0; : : : ; y2k�1 have the step property.Proof: We argue by induction on log k.If 2k = 2, Merger[2k] is just a balancer, so its outputs are guaranteed to have thestep property by the de�nition of a balancer.If 2k > 2, let z0; : : : ; zk�1 be the outputs of the �rst Merger[k] subnetwork, whichmerges the even subsequence of x with the odd subsequence of x0, and let z00; : : : ; z0k�1be the outputs of the second. Since x and x0 have the step property by assumption, sodo their even and odd subsequences (Lemma 3.1), and hence so do z and z0 (inductionhypothesis). Furthermore, P zi = dPxi=2e+ bPx0i=2c and P z0i = bPxi=2c+ dPx0i=2e11

(Lemma 3.2). A straightforward case analysis shows that P zi and P z0i can di�er by atmost 1.We claim that 0 � yi� yj � 1 for any i < j. If P zi = P z0i, then Lemma 3.3 impliesthat zi = z0i for 0 � i < k=2. After the �nal layer of balancers,yi � yj = zbi=2c � zbj=2c;and the result follows because z has the step property.Similarly, if P zi and P z0i di�er by one, Lemma 3.4 implies that zi = z0i for 0 � i <k=2, except for a unique ` such that z` and z 0̀ di�er by one. Let max (z`; z 0̀) = x + 1and min (z`; z 0̀) = x for some non-negative integer x. From the step property on z andz0 we have, for all i < `, zi = z0i = x + 1 and for all i > ` zi = z0i = x. Since z` andz 0̀ are joined by a balancer with outputs y2` and y2`+1, it follows that y2` = x + 1 andy2`+1 = x. Similarly, zi and z0i for i 6= ` are joined by the same balancer. Thus for anyi < `, y2i = y2i+1 = x+ 1 and for any i > `, y2i = y2i+1 = x. The step property followsby choosing c = 2` + 1 and applying Lemma 2.2.The proof of the following theorem is now immediate.Theorem 3.6 In any quiescent state, the outputs of Bitonic[w] have the step property.4 A Periodic Counting NetworkIn this section we show that the bitonic network is not the only counting network withdepth O(log2n). We introduce a new counting network with the interesting propertythat it is periodic, consisting of a sequence of identical subnetworks. Each stage of thisperiodic network is interesting in its own right, since it can be used to achieve barriersynchronization with low contention. This counting network is isomorphic to the elegantbalanced periodic sorting network of Dowd, Perl, Rudolph, and Saks [9]. However, itsbehavior, and therefore also our proof of correctness, are fundamentally di�erent.We start by de�ning chains and cochains, notions taken from [9]. Given a sequencex = fxiji = 0; : : : ; n�1g, it is convenient to represent each index (subscript) as a binarystring. A level i chain of x is a subsequence of x whose indices have the same i low-orderbits. For example, the subsequence xE of entries with even indices is a level 1 chain, asis the subsequence xO of entries with odd indices. The A-cochain of x, denoted xA, is12

the subsequence whose indices have the two low-order bits 00 or 11. For example, the A-cochain of the sequence x0; : : : ; x7 is x0; x3; x4; x7. The B-cochain xB is the subsequencewhose low-order bits are 01 and 10.De�ne the network Block[k] as follows. When k is equal to 2, the Block[k] net-work consists of a single balancer. The Block[2k] network for larger k is constructedrecursively. We start with two Block[k] networks A and B. Given an input sequencex, the input to A is xA, and the input to B is xB. Let y be the output sequence for thetwo subnetworks, where yA is the output sequence for A and yB the output sequence forB. The �nal stage of the network combines each yAi and yBi in a single balancer, yielding�nal outputs z2i and z2i+1. Figure 5 describes the recursive construction of a Block [8]network. The Periodic[2k] network consists of log k Block[2k] networks joined sothat the ith output wire of one is the ith wire of the next. Figure 6 is a Periodic[8]counting network 3This recursive construction is quite di�erent from the one used by Dowd et al. Wechose this construction because it yields a substantially simpler and shorter proof ofcorrectness.4.1 Proof of CorrectnessIn the proof we use the technical lemmas about input and output sequences presentedin Section 3. The following lemma will serve a key role in the inductive proof of ourconstruction:Lemma 4.1 For i > 1,1. The level i chain of x is a level i� 1 chain of one of x's cochains.2. The level i chain of a cochain of x is a level i+ 1 chain of x.Proof: Follows immediately from the de�nitions of chains and cochains.As will be seen, the price of modularity is redundancy, that is, balancers in lower levelblocks will be applied to sub-sequences that already have the desired step property. Wetherefore present the following lemma that amounts to saying that applying balancers\evenly" to such sequences does not hurt:3Despite the apparent similarities between the layouts of the Block and Merger networks, thereis no permutation of wires that yields one from the other.13

x0
x
x
x
x
x
x
x

1

2

3

4

5

6

7

y0
y
y
y
y
y
y
y

1

2

3

4

5

6

7

Block[8]Block[8]

Block[4]

x0
x1
x
x
2

3

x
x
4

5

x
x
6

7

y0
y1
y
y
2

3

y
y
4

5

y
y
6

7

Block[4]Figure 5: A Block [8] balancing network.Lemma 4.2 If x and x0 are sequences each having the step property, and pairs xi andx0i are routed through a balancer, yielding outputs yi and y0i, then the sequences y and y0each have the step property.Proof: For any i < j, given that x and x0 have the step property, 0 � xi�xj � 1 and0 � x0i�x0j � 1 and therefore the di�erence between any two wires is 0 � xi+x0i� (xj+x0j) � 2. By de�nition, for any i, yi = lxi+x0i2 m and y0i = jxi+x0i2 k, and so for any i < j, itis the case that 0 � yi � yj � 1 and 0 � y0i � y0j � 1, implying the step property.To prove the correctness of our construction for Periodic[k], we will show that if ablock's level i input chains have the step property, then so do its level i�1 output chains,for i in f0; : : : ; log k�1g. This observation implies that a sequence of log k Block[k]networks will count an arbitrary number of inputs.Lemma 4.3 Let Block[2k] be quiescent with input sequence x and output sequence y.If xE and xO both have the step property, so does y.Proof: We argue by induction on log k. The proof is similar to that of Lemma 3.5.For the base case, when 2k = 2, Block[2k] is just a balancer, so its outputs areguaranteed to have the step property by the de�nition of a balancer.For the induction step, assume the result for Block[k] and consider a Block[2k].Let x be the input sequence to the block, z the output sequence of the nested blocks Aand B, and y the block's �nal output sequence. The inputs to A are the level 2 chainsxEE and xOO, and the inputs to B are xEO and xOE. By Lemma 4.1, each of these isa level 1 chain of xA or xB. These sequences are the inputs to A and B, themselves of14

size k, so the induction hypothesis implies that the outputs zA and zB of A and B eachhas the step property.Lemma 3.2 implies that 0 � PxEEi � PxEOi � 1 and 0 � PxOEi � P xOOi � 1.It follows that the sum of A's inputs, P xEEi + PxOOi , and the sum of B's inputs,PxEOi +PxOOi , di�er by at most 1. Since balancers do not swallow or create tokens,P zA and P zB also di�er by at most 1. If they are equal, then Lemma 3.3 implies thatzAi = zBi = z2i = z2i+1. For i < j,yi � yj = zAbi=2c � zAbj=2cand the result follows because zA has the step property.Similarly, if P zAi and P zBi di�er by one, Lemma 3.4 implies that zAi = zBi for 0 �i < k, except for a unique ` such that zÀ and zB̀ di�er by one. Let max (zÀ; zB̀) = x+1and min (zÀ; zB̀) = x for some non-negative integer x. From the step property on zAand zB we have, for all i < `, zAi = zBi = x+ 1 and for all i > ` zAi = zBi = x. Since zÀand zB̀ are joined by a balancer with outputs y2` and y2`+1, it follows that y2` = x + 1and y2`+1 = x. Similarly, zAi and zBi for i 6= ` are joined by the same balancer. Thus forany i < `, y2i = y2i+1 = x + 1 and for any i > `, y2i = y2i+1 = x. The step propertyfollows by choosing c = 2`+ 1 and applying Lemma 2.2.Theorem 4.4 Let Block[2k] be quiescent with input sequence x and output sequencey. If all the level i input chains to a block have the step property, then so do all the leveli� 1 output chains.Proof: We argue by induction on i. Lemma 4.3 provides the base case, when i is 1.For the induction step, assume the result for chains up to i� 1. Let x be the inputsequence to the block, z the output sequence of the nested blocks A and B, and y theblock's �nal output sequence. If i > 1, Lemma 4.1 implies that every level i chain of xis entirely contained in one cochain or the other. Each level i chain of x contained in xA(xB) is a level i�1 chain of xA (xB), each has the step property, and each is an input toA (B). The induction hypothesis applied to A and B implies that the level i� 2 chainsof zA and zB have the step property. But Lemma 4.1 implies that the level i� 2 chainsof zA and zB are the level i� 1 chains of z. By Lemma 4.2, if the level i� 1 chains of zhave the step property, so do the level i� 1 chains of y.By Theorem 2.4, the proof of Theorem 4.4 constitutes a simple alternative proof thatthe balanced periodic comparison network of [9] is a sorting network.15

x0
x
x
x
x
x
x
x

1

2

3

4

5

6

7

y0
y
y
y
y
y
y
y

1

2

3

4

5

6

7

Periodic[8]

1st Block[8] 2nd Block[8] 3rd Block[8]

Figure 6: A Periodic [8] counting network.5 Implementation and ApplicationsIn a MIMD shared-memory architecture, a balancer can be represented as a recordwith two �elds: toggle is a boolean value that alternates between 0 and 1, and next isa 2-element array of pointers to successor balancers. A balancer is a leaf if it has nosuccessors. A process shepherds a token through the network by executing the procedureshown in Figure 7. In our implementations, we preassigned processes to input lines sothat they were evenly distributed. Thus, a given process always started shepherdingtokens from the same preassigned line. It toggles the balancer's state, and visits thenext balancer, halting when it reaches a leaf. The network's wiring information can becached by each process, and so the transition time of a balancer will be almost entirelya function of the e�ciency of the toggle implementation. Advancing the toggle statecan be accomplished either by a short critical section guarded by a spin lock4, or by aread-modify-write operation (rmw for short) if the hardware supports it. Note that allvalues are bounded.We illustrate the utility of counting networks by constructing highly concurrent im-plementations of three common data structures: shared counters, producer/consumerbu�ers, and barriers. In Section 6 we give some experimental evidence that countingnetwork implementations have higher throughput than conventional implementationswhen contention is su�ciently high.4A spin lock is just a shared boolean ag that is raised and lowered by at most one processor at atime, while the other processors wait. 16

balancer = [toggle: boolean, next: array [0..1] of ptr to balancer]traverse(b: balancer)loop until leaf(b)i := rmw (b.toggle := : b.toggle)b := b.next[i]end loopend traverseFigure 7: Code for Traversing a Balancing Network5.1 Shared CounterA shared counter [12, 10, 16, 31] is a data structure that issues consecutive integersin response to increment requests. More formally, in any quiescent state in which mincrement requests have been received, the values 0 tom�1 have been issued in response.To construct the counter, start with an arbitrary width-w counting network. Associatean integer cell ci with the ith output wire. Initially, ci holds the value i. A processrequests a number by traversing the counting network. When it exits the network onwire i, it atomically adds w to the value of ci and returns ci's previous value.Lemmas 2.1 and 2.3 imply that:Lemma 5.1 Let x be the largest number yet returned by any increment request on thecounter. Let R be the set of numbers less than x which have not been issued to anyincrement request. Then1. The size of R is no greater than the number of operations still in progress.2. If y 2 R, then y � x�wjRj.3. Each number in R will be returned by some operation in time � � d + �c, whered is the depth of the network, � is the maximum balancer delay, and �c is themaximum time to update a cell on an output wire.5.2 Producer/Consumer Bu�erA producer/consumer bu�er is a data structure in which items inserted by a pool of mproducer processes are removed by a pool of m consumer processes. The bu�er algorithmused here is essentially that of Gottlieb, Lubachevsky, and Rudolph [16]. The bu�er is17

a w-element array bu� [0::w� 1]. There are two w-width counting networks, a producernetwork, and a consumer network. A producer starts by traversing the producer network,leaving the network on wire i. It then atomically inspects bu� [i], and, if it is ?, replacesit with the produced item. If that position is full, then the producer waits for the itemto be consumed (or returns an exception). Similarly, a consumer traverses the consumernetwork, exits on wire j, and if bu� [j] holds an item, atomically replaces it with ?. Ifthere is no item to consume, the consumer waits for an item to be produced (or returnsan exception).Lemmas 2.1 and 2.3 imply that:Lemma 5.2 Suppose m producers and m0 consumers have entered a producer/consumerbu�er built out of counting networks of depth d. Assume that the time to update eachbu� [i] once a process has left the counting network is negligible. Then if m � m0, everyproducer leaves the network in time d�. Similarly, if m � m0, every consumer leavesthe network in time d�.5.3 Barrier SynchronizationA barrier is a data structure that ensures that no process advances beyond a particularpoint in a computation until all processes have arrived at that point. Barriers are oftenused in highly-concurrent numerical computations to divide the work into disjoint phaseswith the property that no process executes phase i while another process concurrentlyexecutes phase i+ 1.A simple way to construct an n-process barrier is by exploiting the following keyobservation: Lemma 2.3 implies that as soon as some process exits with value n, thelast phase must be complete, since the other n� 1 processes must already have enteredthe network.We present a stronger result: one does not need a full counting network to achievebarrier synchronization. A threshold network of width w is a balancing network withinput sequence xi and output sequence yi, such that the following holds:In any quiescent state, yw�1 = m if and only if mw � Pxi < (m+ 1)w.Informally, a threshold network can \detect" each time w tokens have passed throughit. A counting network is a threshold network, but not vice-versa.Both the Block[w] network used in the periodic construction and the Merger[w]network used in the bitonic construction are threshold networks, provided the input18

sequence satis�es the smoothness property. Recall that a sequence x0; :::; xw�1 is smoothif for all i < j, jxi � xjj � 1. Every sequence with the step property is smooth,but not vice-versa. The following two lemmas state that smoothness is \stable" underpartitioning into subsequences or application of additional balancers.Lemma 5.3 Any subsequence of a smooth sequence is smooth.Lemma 5.4 If the input sequence to a balancing network is smooth, so is the outputsequence.Proof: Observe that if the inputs to a balancer di�er by at most one, then so do itsoutputs. By a simple induction on the depth of the network, the output sequence fromthe balancers at any level of a balancing network with a smooth input sequence, is apermutation of its input sequence, hence, the network's output sequence is smooth.Theorem 5.5 If the input sequence to Block[w] is smooth, then Block[w] is a thresh-old network.Proof: Let xi be the block's input sequence, zi the output sequence of nested blocksA and B, and yi the block's output sequence.We �rst show that if yw�1 = m, thenmw � Pxi < (m+1)w. We argue by inductionon w, the block's width. If w = 2, the result is immediate. Assume the result for w = kand consider Block[2k] in a quiescent state where y2k�1 = m. Since x is smooth byhypothesis, by Lemma 5.4 so are z and y. Since y2k�1 and y2k�2 are outputs of a commonbalancer, y2k�2 is either m or m+ 1. The rest is a case analysis.If y2k�1 = y2k�2 = m, then z2k�1 = z2k�2 = m. By the induction hypothesis andLemma 5.3 applied to A and B, mk � PxAi < (m + 1)k and mk � PxBi < (m+ 1)k,and therefore 2mk � PxAi +PxBi < 2(m+ 1)k.If y2k�2 = m + 1, then one of zAi and zBi is m, and the other is m + 1. Withoutloss of generality suppose zAi = m + 1 and zBi = m. By the induction hypothesis,(m + 1)k � PxAi < (m + 2)k and mk � PxBi < (m + 1)k. Since x is smooth, byLemma 5.3 xB is smooth and some element of xB must be equal m, which in turnimplies that no element of xA exceeds m+1. This bound implies that (m+1)k = PxAi .It follows that 2mk + k �PxAi +PxBi < 2(m + 1)k, yielding the desired result.We now show that if mw � Pxi < (m + 1)w, then yw�1 = m. We again argue byinduction on w, the block's width. If w = 2, the result is immediate. Assume the resultfor w = k and consider Block[2k] in a quiescent state where 2mk � Pxi < 2(m+1)k.19

Since x is smooth, by Lemma 5.4 m � y2i�1. Furthermore, since x is smooth, byLemma 5.3, either mk � PxAi � (m + 1)k and mk � PxBi < (m + 1)k or vice versa,which by the induction hypothesis implies that zAk�1 + zBk�1 � 2m + 1. It follows thaty2k�1 < m+ 1, which completes our claim.The proof that the Merger[w] network is also a threshold network if its inputs aresmooth is omitted because it is almost identical to that of Theorem 5.5. A thresholdcounter is constructed by associating a local counter ci with each output wire i, just asin the counter construction.We construct a barrier for n processes, where n = 0 mod w, using a width-w thresholdcounter. The construction is an adaptation of the \sense-reversing" barrier constructionof [18] as follows. Just as for the counter construction, we associate a local counter ciwith each output wire i. Let F be a boolean ag, initially false. Let a process's phaseat a given point in the execution of the barrier algorithm be de�ned as 0 initially, andincremented by 1 every time the process begins traversing the network. With each phasethe algorithm will associate a sense, a boolean value reecting the phase's parity: truefor the �rst phase, false for the second, and so on. As illustrated in Figure 8, the tokenfor process P , after a phase with sense s, enters the network on wire P mod w. If itemerges with a value not equal to n�1 mod n, then it waits until F agrees with s beforestarting the next phase. If it emerges with value n� 1 mod n, it sets F to s, and startsthe next phase.As an aside, we note that a threshold counter implemented from a Block[k] networkcan be optimized in several additional ways. For example, it is only necessary to associatea local counter with wirew�1, and that counter can be modulo n rather than unbounded.Moreover, all balancers that are not on a path from some input wire to exit wire w � 1can be deleted.Theorem 5.6 If P exits the network with value n after completing phase �, then everyother process has completed phase �, and no process has started phase �+ 1.Proof: We �rst observe that the input to Block[w] is smooth, and therefore it is athreshold network. We argue by induction. When P receives value v = n� 1 at the endof the �rst phase, exactly n tokens must have entered Block[w], and all processes musttherefore have completed the �rst phase. Since the boolean F is still false, no processhas started the second phase. Assume the result for phase �. If Q is the process thatreceived value n � 1 at the end of that phase, then exactly �n tokens had entered thenetwork when Q performed the reset of F . If P receives value v = n � 1 at the endof phase � + 1, then exactly (� + 1)n tokens have entered the network, implying thatan additional n tokens have entered, and all n processes have �nished the phase. Noprocess will start the next phase until F is reset.20

barrier()v := exit wire of traverse(wire P mod w)if v = n� 1 (mod w)then F := selse wait until F = send ifs := :send barrierFigure 8: Barrier Synchronization Code6 Performance6.1 OverviewIn this section, we analyze counting network throughput for computations in whichtokens are eventually spread evenly through the network. As mentioned before, to ensurethat tokens are evenly spread across the input wires, each processor could be assigned a�xed input wire. Alternatively, processors could choose input wires at random.The network saturation S at a given time is de�ned to be the ratio of the numberof tokens n present in the network (i.e. the number of processors shepherding tokensthrough it) to the number of balancers. If tokens are spread evenly through the network,then the saturation is just the expected number of tokens at each balancer. For theBitonic and Periodic networks, S = 2n=wd. The network is oversaturated if S > 1,and undersaturated if S < 1.An oversaturated network represents a full pipeline, hence its throughput is domi-nated by the per-balancer contention, not by the network depth. If a balancer with Stokens makes a transition in time �(S), then approximately w=2 tokens emerge from thenetwork every �(S) time units, yielding a throughput of w=2�(S). � is an increasingfunction whose exact form depends on the particular architecture, but similar measuresof degradation have been observed in practice to grow linearly [5, 25]. The throughputof an oversaturated network is therefore maximized by choosing w and d to minimize S,bringing it as close as possible to 1.The throughput of an undersaturated network is dominated by the network depth,not by the per-balancer contention, since the network pipeline is partially empty. Every1=S time units, w=2 tokens leave the network, yielding throughput wS2 . The throughputof an undersaturated network is therefore maximized by choosing w and d to increaseS, bringing it as close as possible to 1. 21

20100

0

10

20

30

40

50

60

70

concurrency (num. of proc.)

tim
e

(s
ec

) Spin-lock

Bitonic[4]

Bitonic[16]

Bitonic[8]

Figure 9: Bitonic Shared Counter ImplementationsThis analysis is necessarily approximate, but it is supported by experimental evi-dence. In the remainder of this section, we present the results of timing experiments forseveral data structures implemented using counting networks. As a control, we comparethese �gures to those produced by more conventional implementations using spin locksThese implementations were done on an Encore Multimax, using Mul-T [21], a paralleldialect of Lisp. The spin lock is a simple \test-and-test-and-set" loop [26] written in as-sembly language, and provided by the Mul-T run-time system. In our implementations,each balancer is protected by a spin lock. 22

20100

0

20

40

60

80

100

120

concurrency (num. of proc.)

tim
e

(s
ec

)

Spin-lock

Periodic[16]

Periodic[8]

Periodic[4]

Figure 10: Periodic Shared Counter Implementations6.2 The Shared CounterWe compare seven shared counter implementations: bitonic and periodic counting net-works of widths 16, 8, and 4, and a conventional spin lock implementation (which can beconsidered a degenerate counting network of width 2). For each network, we measuredthe elapsed time necessary for a 220 (approximately a million) tokens to traverse thenetwork, controlling the level of concurrency.For the bitonic network, the width-16 network has 80 balancers, the width-8 networkhas 24 balancers, and the width-4 network has 6 balancers. In Figure 9, the horizontal23

spin width 2 width 4 width 8bitonic 57.74 17.51 10.44 14.25periodic 17.90 12.03 19.99Figure 11: Producer/Consumer Bu�er Implementationsaxis represents the number of processes executing concurrently. When concurrency is 1,each process runs to completion before the next one starts. The number of concurrentprocesses increases until all sixteen processes execute concurrently. The vertical axis rep-resents the elapsed time (in seconds) until all 220 tokens had traversed the network. Withno concurrency, the networks are heavily undersaturated, and the spin lock's throughputis the highest by far. As saturation increases, however, so does the throughput for eachof the networks. The width-4 network is undersaturated at concurrency levels less than6. As the level of concurrency increases from 1 to 6, saturation approaches 1, and theelapsed time decreases. Beyond 6, saturation increases beyond 1, and the elapsed timeeventually starts to grow. The other networks remain undersaturated for the range ofthe experiment; their elapsed times continue to decrease. Each of the networks beginsto outperform the spin lock at concurrency levels between 8 and 12. When concurrencyis maximal, all three networks have throughputs at least twice the spin lock's. Noticethat as the level of concurrency increases, the spin lock's performance degrades in anapproximately linear fashion (because of increasing contention).The performance of the periodic network (Figure 10) is similar. The width-4 networkreaches saturation 1 at 8 processes; its throughput then declines slightly as it becomesoversaturated. The other networks remain undersaturated, and their throughputs con-tinue to increase. Each of the counting networks outperforms the spin lock at su�cientlyhigh levels of contention. At 16 processes, the width-4 and width-8 networks have almosttwice the throughput of the single spin-lock implementation. Each bitonic network hasa slightly higher throughput than its periodic counterpart.6.3 Producer/Consumer Bu�ersWe compare the performance of several producer/consumer bu�ers implemented usingthe algorithm of Gottlieb, Lubachevsky, and Rudolph [16] discussed in Section 5. Eachimplementation has 8 producer processes, which continually produce items, and 8 con-sumer processes, which continually consume items. If a producer (consumer) process�nds its bu�er slot full (empty), it spins until the slot becomes empty (full).We consider bu�ers with bitonic and periodic networks of width 2, 4, and 8. As24

Spin lock Barrier 4 Barrier 8 Barrier 16time (seconds) 62.05 43.53 41.27 42.32Figure 12: Barrier Implementationsa �nal control, we tested a circular bu�er protected by a single spin lock, a structurethat permits no concurrency between producers and consumers. Figure 11 shows thetime in seconds needed to produce and consume 220 tokens. Not surprisingly, the singlespin-lock implementation is much slower than any of the others. The width-2 networkis heavily oversaturated, the bitonic width-4 network is slightly oversaturated, while theothers are undersaturated.6.4 Barrier SynchronizationFigure 12 shows the time (in seconds) taken by 16 processes to perform 216 barriersynchronizations. The remaining columns show Block[k] networks of width 4, 8, and16. The last column shows a simple sense-reversing barrier in which the Block networkis replaced by a single counter protected by a spin lock. The three network barriers areequally fast, and each takes about two-thirds the time of the spin-lock implementation.7 Verifying That a Network CountsThe \0-1 law" states that a comparison network is a sorting network if (and only if)it sorts input sequences consisting entirely of zeroes and ones, a property that greatlysimpli�es the task of reasoning about sorting networks. In this section, we present ananalogous result: a balancing network having m balancers is a counting network if (andonly if) it satis�es the step property for all sequential executions in which up to 2m tokenshave traversed the network. This result simpli�es reasoning about counting networks,since it is not necessary to consider all concurrent executions. However, as we show,the number of tokens passed through the network in the longest of these sequentialexecutions cannot be less than exponential in the network depth.We begin by proving that it su�ces to consider only sequential executions.Lemma 7.1 Let s be a valid schedule of a given balancing network. Then there existsa valid sequential schedule s0 such that the number of tokens which pass through eachbalancer in s and s0 is equal. 25

Proof: Let s = s0 � p � q � s1, where s0; s1 are sequences of transitions, p and q are indi-vidual transitions involving distinct tokens P and Q, and where \�" is the concatenationoperator. If p and q do not occur at the same balancer, then s0 � q � p � s1 is a validschedule. If p and q do occur at the same balancer, then s0 � q � p � s01 is a valid schedulewhere s01 is constructed from s1 by swapping the identities of P and Q. In each case wecan swap p and q without changing the preceding sequence of transitions s0 and withoutchanging the number of tokens that pass through any balancer during the execution.Now suppose that s is a complete schedule. We will transform it into a sequentialschedule by a process similar to selection sorting. Choose some total ordering of thetokens in s. Split s into s0 � t0 where s0 is the empty sequence and t0 = s. Nowrepeatedly carry out the following procedure which constructs si+1 � ti+1 from si � ti:while ti is nonempty let p be the earliest transition in ti whose token is ordered as lessthan or equal to all tokens in ti. Move p to the beginning of ti by swapping it witheach earlier token in ti as described above, and let si+1 = si � p and ti+1 be the su�x ofthe resulting schedule after p. This procedure is easily seen to maintain the followinginvariant:1. After stage i, si � ti is a valid schedule in which each balancer passes the samenumber of tokens as in s.2. After stage i, si is sorted by token.Thus when the procedure terminates, we have a valid sequential schedule s0 in whicheach balancer passes the same number of tokens as in s.Theorem 7.2 A balancing network with m balancers satis�es the step property in allexecutions if (and only if) it satis�es it in all sequential executions in which at most 2mtokens traverse the network.Proof: Since the step property depends only on the number of tokens that pass throughthe network's output wires, it follows from Lemma 7.1 that a balancing network satis�esthe step property in all executions if (and only if) it satis�es it in all sequential executions.We now show that any failure to satisfy the step property can be detected in someexecution involving at most 2m tokens. Consider sequential executions of a balancingnetwork with m balancers. Any quiescent state is characterized by specifying for eachbalancer the output wire to which it will send the next token, yielding a maximumof 2m distinct quiescent states. In a sequential execution, each time a token traversesthe network, it carries the network from one quiescent state to another. Thus, in anyexecution, after at most 2m traversals, the network must reenter its initial state. Let H26

be the shortest sequential execution needed to detect a violation of the step property. IfH involves more than 2m tokens, then H can be split into a pre�x H0 and a su�x H1such that H0 involves at most 2m tokens and leaves the network in its initial state. IfH0 sends \illegal" numbers of tokens through two output wires, then H0 alone su�cesto detect the violation, and otherwise H1 alone su�ces.How tight is this bound? We now construct a balancing network that is not acounting network, yet satis�es the step property for any execution in which the numberof tokens is less than exponential in the network depth. Through the remainder of thissection we will only consider networks in quiescent states, so that we can ignore issuesof timing and concentrate solely on the total number of tokens that have passed alongeach wire.First, consider the following balancing network Stage [2w]. Take two counting net-works A and B of width w having outputs wires a0 through aw�1 and b0 through bw�1respectively. Add a layer of w balancers such that the i-th balancer has inputs ai andbw�1�i and outputs a0i and b0w�1�i. The resulting network Stage [2w] is not a countingnetwork; however, it is easily extended to one by virtue of the following lemma.Lemma 7.3 For any input to Stage [2w], there exists a permutation �a of the outputsequence a00; : : : ; a0w�1 and a permutation �b of the output sequence b00; : : : ; b0w�1 such thatthe sequence �a(a00; : : : ; a0w�1) � �b(b00; : : : ; b0w�1) has the step property.Proof: Observe that the total inputs to any two balancers in the last layer di�er byat most 1.Thus there is always a k such that every balancer in the last layer outputs eitherk or k + 1 tokens. If k is even, then b0i = k=2 for all i and a0i = ai + bw�1�i � k=2,which is either k=2 or k=2 + 1. One can obtain a sequence with the step property bysetting �a to sort the values in a0. If k is odd, then each a0i is (k + 1)=2 and each b0i isaw�1�i + bi � (k + 1)=2, which will be either (k + 1)=2 or (k + 1)=2 � 1. In this casehaving �b sort the values in b0 produces the desired result.By Lemma 2.2 it follows thatCorollary 7.4 For any m tokens input to Stage [2w], Pw�1i=0 a0i = Pw�1i=0 dm�i=2we andPw�1i=0 b0i = P2w�1i=w dm� i=2we.In other words, the total number of tokens that end up on the a00; : : : ; a0w�1 and b00; : : : ; b0w�1outputs wires is the same as in a proper counting network. In fact, Lemma 7.3 guar-antees an even stronger property: the actual number of tokens on each wire correspond27

to the number of tokens that occur on some wire in the output sequence of a propercounting network. However, there is no guarantee that these numbers appear in thecorrect order (or even the same order given di�erent inputs). Because of Theorem 2.6,we can extend the Stage[2w] network into a (not very e�cient) counting network bypassing the outputs a00; : : : ; a0w�1 and b00; : : : ; b0w�1 to two separate balancing networksisomorphic to sorting networks. But we are not interested in getting a working countingnetwork; instead we will use a modi�ed version of Stage[2w] to construct a balancingnetwork which counts all input sequences with up to some bounded number of tokens,but fails on sequences with more tokens.We construct such a balancing network (denoted Almost [2w]) as follows. Take aStage [2w] network and modify it by picking some x other than 0 or w�1 and deletingthe �nal balancer between ax and bw�1�x. Denote this balancing network as Stagex[2w].Let Almost [2w] be the periodic network constructed from k stages, for some k > 0,each a Stagex[2w] network, with the outputs of each stage connected to the inputs ofthe next.Let At and Bt be the sums of the number of tokens input to each of the two sub-networks A and B in the t-th stage of Almost [2w]. A0 and B0 are thus the numbersof tokens input to A and B respectively. Let y = fy0; : : : ; y2w�1g be the sequence givenby yi = d(A0 + B0 � i)=2we. Thus, yi counts the number of tokens that would exit onoutput wire i if Almost [2k] were a counting network.We now de�ne the quantities A1 and B1 used in the proofs below. They measurethe number of tokens that would have come out of the respective parts of network inthe last stage (t = 1) if it were a counting network. Formally, let A1 = Pw�1i=0 yi,and B1 = P2w�1i=w yi. Note that At + Bt = A0 + B0 = A1 + B1 for all t and that byLemma 2.2, d(A1 � i)=we = yi and d(B1 � i)=we = yw+i for all i.Finally, let the imbalance �t = At � A1 = �(Bt � B1); this quantity represents\how far" the network is from balancing the tokens between the A and B subnetworksin stage t, in other words, how many excess tokens must be moved from the A part ofthe network to the B part (or, if the quantity is negative, how many tokens should bemoved from B to A).The following lemma follows from arguments almost identical to those of Lemma 5.4.Lemma 7.5 If the input sequence to a balancing network has the step property, then sodoes the output sequence.Lemma 7.6 In the output sequence of stage t of Almost [2w], each ai is equal to yi+ei,where ei � 0 when �t � 0, and ei � 0 when �t � 0; and each bi is equal to yw+i + ew+i,where ei � 0 when �t � 0, and ei � 0 when �t � 0.28

Proof: For i < w we haveei = ai � yi= d(At � i)=we � d(A1 � i)=we= d(�t +A1 � i)=we � d(A1 � i)=wewhich is at least zero when � � 0 and at most zero when � � 0.The claim for ew+i = bi � yw+i follows by a similar argument.Corollary 7.7 If �t = 0 then the output sequences of stage t of Almost [2w] have thestep property.Proof: If �t = 0 then by the preceding lemma each ai = yi and bi = yw+i, so theoutput sequences of stage t form the sequence y. Since y has the step property it is leftunchanged by the �nal layer of balancers (Lemma 7.5).Lemma 7.8 �t+1 = j d(At�x)=we�d(Bt�(w�1�x))=we2 k.Proof: If a balancer were placed between a0x and b0w�1�x after stage t, then the Stagex[2w]network would become a Stage [2w] counting network, and by Corollary 7.4, exactlyA1 tokens would emerge from the A half of the network after stage t + 1, giving animbalance would be 0. The above quantity �t+1 is simply the number of tokens that thisbalancer would move from the A part of the network to the B part in order to bringthe parts into balance, and is thus the actual imbalance that results from deleting thebalancer.The following lemmas show that the imbalance tends toward zero as more stages areadded:Lemma 7.9 If �t � 0 then �t+1 � 0. If �t � 0 then �t+1 � 0.Proof: Suppose �t � 0. Then At � A1 and Bt � B1, and so�t+1 = $d(At � x)=we � d(Bt � (w � 1� x))=we2 %� $d(A1 � x)=we � d(B1 � (w � 1� x))=we2 %= 0:(The last equality holds because when the two parts of the network hold A1 and B1tokens there is no imbalance.)Reversing the inequalities gives the corresponding result for �t � 0.29

Lemma 7.10 If j�tj > 0 then j�t+1j � j�tj � 1.Proof: By virtue of Lemma 7.9 we need only show that � decreases when positive andincreases when negative.Let a0; : : : ; aw�1; b0; : : : ; bw�1 be the outputs of theA and B subnetworks of the (t+1)-th stage before the last layer of balancers. Because �t 6= 0, this sequence does not havethe step property; however, each of the two subsequences a0; : : : aw�1 and b0; : : : ; bw�1 isthe output of a counting network and so has the step property. Thus the step propertyof the whole sequence must be violated by some ai, bj such that ai � bj is either lessthan 0 or greater than 1.We will consider two cases, depending on the sign of �t:Case 1. �t < 0. Then by Lemma 7.6 each ai � yi and each bj � yw+j . (Recall that yi isthe number of tokens that would exit from the i-th output of a counting networkwith the same input sequence.) So for each ai and each bj we have, using the stepproperty of the y sequence, ai � yi � yw+j + 1 � bj + 1. Thus:1. For each ai and bw�1�i, ai � bw�1�i+1, so the balancer between these outputsmoves no tokens from the A side to the B side.2. Given some ai and bj that violate the step property, it cannot be the casethat ai > bj + 1 and thus it must be the case that ai < bj. But thenaw�1 � ai < bj � b0, and since aw�1 and b0 are connected by a balancer, thatbalancer moves at least one token from the B side to the A side.Hence at least one token moves from the B side to the A side and �t+1 > �t.Case 2. �t > 0. Then each ai � yi and each bi � yw+i. So ai � yi � yw+1 � bi. Thus:1. For each ai and bw�1�i, ai � bw�1�i, so no �nal-stage balancer moves tokensfrom the B side to the A side.2. Given some ai and bj that violate the step property, it must be the case thatai � bj +2. But a0 � ai � bj + 2 � bw�1 + 2; so the balancer between a0 andbw�1 moves at least one token from the A side to the B side.Hence at least one token moves from the A side to the B side and �t+1 < �t.Lemma 7.11 �t+1 = �t=w + c where �3=2 � c < 3=2.30

Proof: From Lemma 7.8 we have:�t+1 = $d(At � x)=we � d(Bt � (w � 1 � x))=we2 %Looking more closely at the Bt term, notice that lB�(w�1�x)w m = lB+x+1w m � 1. If(B+x+1)w is not an integer then this is just jB+x+1w k, which is equal to jB+xw k since sub-tracting 1 from the numerator cannot bring it below the next integral multiple of w.Now if (B+x+1)w is an integer then this is jB+x+1w k�1 which in this case is equal to jB+xw ksince subtracting 1 from the numerator does bring it below an integral multiple of w. Soin either case we have lB�(w�1�x)w m = jB+xw k, and we can rewrite the original expressionas: �t+1 = $d(At � x)=we � b(Bt + x)=wc2 %= $(At � x)=w � (Bt + x)=w + c12 %= At �Bt2w � xw + c12 � c2= 2�t + (A1 �B1)2w � xw + c12 � c2where 0 � c1 < 2 and 0 � c2 < 1. Using the fact that 0 � A1 � B1 � w (hence0 � (A1 �B1)=2w � 1=2), and that 0 < x � w � 1 (hence 1=2 < �x=w � 0), we canrewrite all of the terms not containing � as a single value c and get�t+1 = �tw + cwhere the bound �3=2 < c < 3=2 is obtained by summing the bounds on the individualterms.Theorem 7.12 Let w be a power of 2 greater than 1. Then there exists a width-2wbalancing network that has the step property in all executions with up to w(k�4) tokens,yet is not a counting network.Proof: From Lemma 7.11 we have j�t+1j < j�tj=w + 3=2. Let U(t) be de�ned bythe recurrence U(0) = j�0j, U(t + 1) = U(t)=w + 3=2; then U(t) is a strict upper31

bound on j�tj for t > 0. Solving the recurrence using standard methods yields U(t) =j�0jw�t + (3=2)1�1=w � � (3=2)w�1 �w�t.Now suppose the network is given an input involving at most wt tokens. Then j�0jcannot possibly exceed wt, and after t stages j�tj < U(t) � 1+ (3=2)1�1=w��(3=2)w�1 �w�t, whichis at most 4 if w � 2 and t � 1. So by Lemma 7.10, j�t+4j = 0 and thus by Corollary 7.7the outputs of stage t+4 have the step property. Thus a network with k = t+4 stageswill count up to w(k�4) tokens.To see that this k-stage network is not a counting network, suppose j�0j > 4w(k+1).From Lemma 7.11 we have j�t+1j > j�tj=w � 3=2. Let L(t) be de�ned by L(0) = j�0jand L(t + 1) = L(t)=w � 2; L(t)is a strict lower bound on j�tj for t > 0. Solving therecurrence gives L(t) = j�0jw�t� (3=2)1�1=w+� (3=2)w�1 �w�t. Dropping the last term and settingj�0j > 4w(k+1) gives j�k+1j > L(k + 1) > 4 � (3=2)1�1=w � 1. Since �k+1 6= 0, the outputs ofstage k (and hence the entire network) cannot have the step property.8 DiscussionCounting networks deserve further study. We believe that they represent a start towarda general theory of low-contention data structures. Work is needed to develop otherprimitives, to derive upper and lower bounds and new performance measures. We havemade a start in this direction by deriving constructions and lower bounds for linearizablecounting networks [20], networks which guarantee that the values assigned to tokensreect the real-time order of their traversals. Aharonson and Attiya [3], Felton, LaMarca,and Ladner [11], and Hardavellas, Karakos, and Mavronicolas [17] have investigated thestructure of counting networks with fan-in greater than two. Klugerman and Plaxton[23] have shown an explicit network construction of depth O(c log� n log n) for some smallconstant c, and an existential proof of a network of depth O(log n).Work is also needed in experimental directions, comparing counting networks to othertechniques, for example those based on exponential backo� [1], and for understandingtheir behavior in architectures other than the single-bus architecture provided by theEncore. We have made a start in this direction by comparing the performance of countingnetworks to that of known methods using the ASIM simulator of the MIT Alewifemachine [19]. Preliminary results show that there is a substantial gain in performancedue to parallelism on such distributed memory machines.Finally, we point out that smoothing networks, balancing networks that smooth butdo not necessarily count, are interesting in their own right since they can be used ashardware solutions to problems such as load balancing (cf. [28]).32

9 AcknowledgmentsOrli Waarts made many important remarks. The serialization lemma and the obser-vation that smoothing + sorting = counting, are products of our cooperation with herand with Eli Gafni, to whom we are also in debt. Our thanks to Heather Woll, andShanghua Teng for several helpful discussions, to Cynthia Dwork for her comments, andto David Kranz and Randy Osborne for Mul-T support, and to the helpful yet anony-mous referees. Finally, the �rst and third authors wish to thank David Michael Herlihyfor remaining quiet during phone calls.

33

References[1] A. Agarwal and M. Cherian. Adaptive Backo� Synchronization Techniques 16th Sympo-sium on Computer Architecture, June 1989.[2] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory Mul-tiprocessor. In Proceedings of Workshop on Scalable Shared Memory Multiprocessors.Kluwer Academic Publishers, 1991. An extended version of this paper has been submit-ted for publication, and appears as MIT/LCS Memo TM-454, 1991.[3] E. Aharonson and H. Attiya. Counting Network with Arbitrary Fan-Out. In 3rd Sympo-sium on Discrete Algorithms, pages 104{113. ACM-SIAM, January 1992.[4] M. Ajtai, J. Komlos and E. Szemeredi. An O(n logn) sorting network. In Proceedings ofthe 15th ACM Symposium on the Theory of Computing, 1-9, 1983.[5] T.E. Anderson. The performance implications of spin-waiting alternatives for shared-memory multiprocessors. Technical Report 89-04-03, University of Washington, Seattle,WA 98195, April 1989.[6] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting Networks and Multi-Processor Coor-dination In Proceedings of the 23rd Annual Symposium on Theory of Computing, May1991, New Orleans, Louisiana.[7] K.E. Batcher. Sorting networks and their applications. In Proceedings of AFIPS JointComputer Conference, 32:338-334, 1968.[8] T.H. Cormen, C.E. Leiserson, and R. L. Rivest. Introduction to Algorithms MIT Press,Cambridge MA, 1990.[9] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The Periodic Balanced Sorting NetworkJournal of the ACM, 36(4):738{757, October 1989.[10] C.S. Ellis and T.J. Olson. Algorithms for parallel memory allocation. Journal of ParallelProgramming, 17(4):303{345, August 1988.[11] E.W. Felton, A. LaMarca, and R. Ladner. Building Counting Networks from LargerBalancers. Technical Report 93-04-09, University of Washington, Seattle, WA 98195,April 1993.[12] E. Freudenthal and A. Gottlieb Process Coordination with Fetch-and-Increment In Pro-ceedings of the 4th International Conference on Architecture Support for ProgrammingLanguages and Operating Systems, April 1991, Santa Clara, California.[13] D. Gawlick. Processing 'hot spots' in high performance systems. In Proceedings COMP-CON'85, 1985. 34

[14] J. Goodman, M. Vernon, and P. Woest. A set of e�cient synchronization primitives for alarge-scale shared-memory multiprocessor. In 3rd International Conference on Architec-tural Support for Programming Languages and Operating Systems, April 1989.[15] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuli�e, L. Rudolph, and M. Snir. TheNYU ultracomputer { designing an mimd parallel computer. IEEE Transactions on Com-puters, C-32(2):175{189, February 1984.[16] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic techniques for the e�cient coor-dination of very large numbers of cooperating sequential processors. ACM Transactionson Programming Languages and Systems, 5(2):164{189, April 1983.[17] N. Hardavellas, D. Karakos, and M. Mavronicolas. Notes on Sorting and Counting Net-works. in Proceedings of WDAG'93, to appear.[18] D. Hensgen and R.Finkel and U. Manber. Two algorithms for barrier synchronization.International Journal of Parallel Programming, 17(1):1-17, 1988.[19] M.P. Herlihy, B.H. Lim, and N. Shavit. Low Contention Load Balancing on Large ScaleMultiprocessors. In 4th Annual ACM Symposium on Parallel Algorithms and Architec-tures, June 1992, pp. 219{227.[20] M.P. Herlihy, N. Shavit, and O. Waarts. Low-Contention Linearizable Counting. In 32thIEEE Symposium on Foundations of Computer Science, October 1991, pp. 526{535.[21] D. Kranz, R. Halstead, and E. Mohr. \Mul-T, A High-Performance Parallel Lisp", ACMSIGPLAN '89 Conference on Programming Language Design and Implementation, Port-land, OR, June 1989, pp. 81{90.[22] C.P. Kruskal, L. Rudolph, and M. Snir. E�cient synchronization on multiprocessors withshared memory. In Fifth ACM SIGACT-SIGOPS Symposium on Principles of DistributedComputing, August 1986.[23] M. Klugerman and C.G. Plaxton. Small-depth Counting Networks. In ACM Symposiumon the Theory of Computing???.[24] N.A. Lynch and M.R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms.In Sixth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,August 1987, pp. 137{151. Full version available as MIT Technical Report MIT/LCS/TR{387.[25] J.M. Mellor-Crummey and M.L. Scott. Algorithms for scalable synchronization on shared-memory multiprocessors. Technical Report Technical Report 342, University of Rochester,Rochester, NY 14627, April 1990.[26] L. Rudolph, Decentralized cache scheme for an MIMD parallel processor. In 11th AnnualComputing Architecture Conference, 1983, pp. 340-347.35

[27] J.M. Mellor-Crummey and M.L. Scott Synchronization without Contention In Proceedingsof the 4th International Conference on Architecture Support for Programming Languagesand Operating Systems, April 1991, Santa Clara, California. ???[28] D. Peleg and E. Upfal. The token distribution problem. In 27th IEEE Symposium onFoundations of Computer Science, October 1986.[29] G.H. P�ster et al. The IBM research parallel processor prototype (RP3): introductionand architecture. In International Conference on Parallel Processing, 1985.[30] G.H. P�ster and A. Norton. `hot spot' contention and combining in multistage inter-connection networks. IEEE Transactions on Computers, C-34(11):933{938, November1985.[31] H.S. Stone. Database applications of the fetch-and-add instruction. IEEE Transactionson Computers, C-33(7):604{612, July 1984.[32] U. Vishkin. A parallel-design distributed-implementation (PDDI) general purpose com-puter. Theoretical Computer Science, 32:157{172, 1984.

36

