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ABSTRACT
Lock-free (non-blocking) shared data structures promise more
robust performance and reliability than conventional lock-
based implementations. However, all prior lock-free algo-
rithms for sets and hash tables suffer from serious drawbacks
that prevent or limit their use in practice. These drawbacks
include size inflexibility, dependence on atomic primitives not
supported on any current processor architecture, and depen-
dence on highly-inefficient or blocking memory management
techniques.

Building on the results of prior researchers, this paper
presents the first CAS-based lock-free list-based set algorithm
that is compatible with all lock-free memory management
methods. We use it as a building block of an algorithm for
lock-free hash tables. In addition to being lock-free, the new
algorithm is dynamic, linearizable, and space-efficient.

Our experimental results show that the new algorithm out-
performs the best known lock-free as well as lock-based hash
table implementations by significant margins, and indicate
that it is the algorithm of choice for implementing shared
hash tables.

Categories and Subject Descriptors: D.1.3 [Programming
Techniques]: Concurrent Programming; D.4.1 [Operat-
ing Systems]: Process Management—concurrency, multi-
processing/multiprogramming/multitasking, synchronization;
E.2 [Data Storage Representations]: hash table represen-
tations

General Terms: Algorithms, Performance, Reliability

1. INTRODUCTION
The hash table is a ubiquitous data structure widely used

in system programs and applications as a search structure.
Its appeal lies in its guarantee of completing each operation in
expected constant time, with the proper choice of a hashing
function and assuming a constant load factor [3, 12].

To ensure correctness, concurrent access to shared objects
must be synchronized. The most common synchronization
method is the use of mutual exclusion locks. However, lock-
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based shared objects suffer significant performance degrada-
tion when faced with the inopportune delay of a thread while
holding a lock, for instance due to preemption. While the
lock holder is delayed, other active threads that need ac-
cess to the locked shared object are prevented from making
progress until the lock is released by the delayed thread.

A lock-free (also called non-blocking) implementation of
a shared object guarantees that if there is an active thread
trying to perform an operation on the object, some operation,
by the same or another thread, will complete within a finite
number of steps regardless of other threads’ actions [8]. Lock-
free objects are inherently immune to priority inversion and
deadlock, and offer robust performance, even with indefinite
thread delays and failures.

Shared sets (also called dictionaries) are the building blocks
of hash table buckets. Several algorithms for lock-free set im-
plementations have been proposed. However, all suffer from
serious drawbacks that prevent or limit their use in practice.

Lock-free set algorithms fall into two main categories: array-
based and list-based. Known array-based lock-free set algo-
rithms [5, 13] are generally impractical. In addition to re-
stricting maximum set size inherently, they do not provide
mechanisms for preventing duplicate keys from occupying
multiple array elements, thus limiting the maximum set size
even more, and requiring excessive overallocation in order to
guarantee lower bounds on maximum set sizes.

Prior list-based lock-free set algorithms involve one or more
serious problems: dependence on the DCAS (double-compare-
and-swap)1 atomic primitive that is not supported on any
current processor architecture [5, 14], susceptibility to live-
lock [25], and/or dependence on problematic memory man-
agement methods [6, 14, 25] (i.e., memory management meth-
ods that are impractical, very inefficient, blocking (not lock-
free), and/or dependent on special operating system sup-
port).

The use of universal lock-free methodologies [1, 2, 8, 11,
22, 24] for implementing hash tables or sets in general is too
inefficient to be practical.

This paper presents a lock-free list-based set algorithm that
we use as a building block of a lock-free hash table algo-
rithm. The algorithm is dynamic, allowing the object size
and memory use to grow and shrink arbitrarily. It satisfies
the linearizability correctness condition [9].

It uses CAS (compare-and-swap) or equivalently restricted
LL/SC (load-linked/store-conditional). CAS takes three ar-
guments: the address of a memory location, an expected

1DCAS takes six arguments: the addresses of two indepen-
dent memory locations, two expected values and two new
values. If both memory locations hold the corresponding ex-
pected values, they are assigned the corresponding new val-
ues atomically. A Boolean return value indicates whether the
replacements occurred.
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value and a new value. If the memory location holds the
expected value, it is assigned the new value atomically. A
Boolean return value indicates whether the replacement oc-
curred. SC takes two arguments: the address of a memory
location and a new value. If no other thread has written the
memory location since the current thread last read it using
LL, it is assigned the new value atomically. A Boolean re-
turn value indicates whether the replacement occurred. All
architectures that support LL/SC restrict some or all mem-
ory accesses between LL and SC, and allow SC to fail spuri-
ously. All current major processor architectures support one
of these two primitives.

This algorithm is the first CAS-based list-based set or hash
table algorithm that is compatible with simple and efficient
methods [10, 17], as well as all other memory management
methods for lock-free objects.

Our experimental results show significant performance ad-
vantages of the new algorithm over the best known lock-free
as well as lock-based hash table implementations. The new
algorithm outperforms the best known lock-free algorithm [6]
by a factor of 2.5 or more, in all lock-free cases. It outper-
forms the best lock-based implementations, under high and
low contention, with and without multiprogramming, often
by significant margins.

In Section 2 we review prior lock-free algorithms for sets
and hash tables and relevant memory management methods.
In Section 3 we present the new algorithm. In Section 4 we
discuss its correctness. In Section 5 we present performance
results relative to other hash table implementations. We con-
clude with Section 6.

2. BACKGROUND

2.1 The Hash Table Data Structure
A hash table is a space efficient representation of a set

object K when the size of the universe of keys U that can
belong to K is much larger than the average size of K. The
most common method of resolving collisions between multiple
distinct keys in K that hash to the same hash value h is to
chain nodes containing the keys (and optional data) into a
linked list (also called bucket) pointed to by a head pointer in
the array element of the hash table array with index h. The
load factor α is the ratio of |K| to m, the number of hash
buckets [3, 12].

With a well-chosen hash function h(k) and a constant aver-
age α, operations on a hash table are guaranteed to complete
in constant time on the average. This bound holds for shared
hash tables in the absence of contention.

The basic operations on hash tables are: Insert, Delete
and Search. Most commonly, they take a key value as an
argument and return a Boolean value. Insert(k) checks if
nodes with key k are in the bucket headed by the hash table
array element of index h(k). If found (i.e., k ∈ K), it returns
false. Otherwise it inserts a new node with key k in that
bucket and returns true.
Delete(k) also checks the bucket with index h(k) for nodes

with key k. If found, it removes the nodes from the list and
returns true. Otherwise, it returns false. Search(k) returns
true if the bucket with index h(k) contains a node with key
k, and returns false otherwise.

For time and space efficiency most implementations do not
allow multiple nodes with the same key to be present concur-
rently in the hash table. The simplest way to achieve this is
to keep the nodes in each bucket ordered by their key values.

Figure 1 shows a list-based hash table representing a set
K of positive integer keys. It has seven buckets and the hash
function h(k) = k mod 7.

By definition, a hash function maps each key to one and
only one hash value. Therefore, operations on different hash
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Figure 1: An example of a hash table with 7 buckets
and hash function h(k) = k mod 7.

buckets are inherently disjoint and are obvious candidates
for concurrency. Generally, hash table implementations allow
concurrent access to different buckets or groups of buckets to
proceed without interference. For example if locks are used,
different buckets or groups of buckets can be protected by
different locks, and operations on different bucket groups can
proceed concurrently. Thus, shared set implementations are
obvious building blocks of concurrent hash tables.

2.2 Prior Lock-Free Set Algorithms

Array-Based Lock-Free Set Algorithms
Lanin and Shasha [13] presented two array-based set algo-
rithms that can be implemented using CAS. The first algo-
rithm allows Delete and Search operations without locking,
but requires Insert operations to use locks, in order to avoid
the concurrent insertion of multiple instances of the same key
into the hash table. The use of locks precludes the algorithm
from being lock-free.

The second algorithm allows duplicate key values to occupy
multiple array elements. Delete operations must search for
and delete all matching keys in the array. Using arrays to
represent sets requires the maximum bucket size to be static.
For a hash table the maximum bucket size is too large to allow
static allocation, and doing so would eliminate any advantage
of hash tables over direct addressing of arrays. Furthermore,
even if an upper bound on the bucket set size is known, the
array cannot guarantee accommodating that size, without
excessive overallocation, as the same key value may occupy
multiple array entries. The algorithm is impractical even
when a maximum set size can be set.

Greenwald [5] presented an incomplete lock-free array-based
set algorithm using DCAS that does not address the issue of
handling duplicate copies of the same key in the array.

List-Based Lock-Free Set Algorithms
Massalin and Pu [14] presented a sketch of a lock-free linked
list algorithm that uses the Motorola 68040 CAS2 instruc-
tion (more commonly known as DCAS in recent years). The
algorithm performs deletions from the middle of the list in
two steps, it first marks a node as deleted and then removes
it from the list. The algorithms deals with memory man-
agement of deleted nodes by using reference counting. Many
details of the algorithm are lacking.

Also using DCAS, Greenwald [5] presented a lock-free linked
list algorithm. The algorithm allows insert and delete oper-
ations to complete in one step, in the absence of contention,
by using a version number that must be incremented with
every change to the list.
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DCAS was supported on some generations of the Motorola
68000 processor family (as CAS2) in the 1980s. These im-
plementations were extremely inefficient. Since then no pro-
cessor architecture supports DCAS. Algorithms using DCAS
remain impractical until such an instruction is supported ef-
ficiently on processor architectures.

Valois [25] presented CAS-based lock-free linked list algo-
rithms that place one or more auxiliary nodes between every
two normal nodes (i.e., nodes containing keys) to allow safe
deletions. The algorithms also rely on a shared cursor that
has to be positioned using CAS, at the target nodes of oper-
ations on the list, before these operations can be attempted.
However, the concept of a shared cursor is actually inher-
ently inconsistent with lock-freedom. For example, it is pos-
sible that two threads attempting operations (e.g., Insert) on
the list at different locations, indefinitely alternate moving
the shared cursor to their respective desired positions, with
neither of them completing its intended operation. That is,
the algorithm is susceptible to livelock, thus violating a basic
correctness condition, and by definition is not lock-free. In
addition, the algorithm is inefficient due to the extra work
manipulating auxiliary nodes, and is not compatible with
simple and efficient lock-free memory management methods.

Harris [6] presented the first correct CAS-based lock-free
list-based set algorithm. A Delete operation, first marks a
node as deleted using CAS to prevent new nodes from being
linked to it, and then removes it from the list by swinging
the next pointer of the previous node to the next node in the
list, also using CAS.

The algorithm allows a thread traversing the list to access
the contents of a node or a sequence of nodes after they have
been removed from the list. If removed nodes are allowed to
be reused immediately, the traversing thread may reach an
incorrect result or corrupt the list.

This precludes the algorithm from using simple and effi-
cient lock-free memory management methods, the IBM freel-
ists [10, 23] and the safe memory reclamation method [17]. It
forces the algorithm to use problematic memory management
methods as discussed in the following subsection.

2.3 Memory Management
Initially, Harris used Valois’ [25] reference counting mem-

ory management method. The method requires the inclusion
of a reference counter in each dynamic node, that reflects the
maximum number of references to that node in the object
and the registers and local variables of threads operating on
the object. A node can be reused only after its reference
counter goes to zero. As reported by Harris [6], the method
entailed prohibitive degradation in execution time by a factor
of 10 to 15 times, relative to experiments without memory
management, where removed nodes are not reused. Obvi-
ously, prohibiting memory reuse is not a generally practical
solution for this problem, since the address space no matter
how large is a finite resource.

As an alternative, Harris suggested assuming the use of a
tracing garbage collector. However, garbage collectors pose
many problems for lock-free algorithms. First, the presence
of a garbage collector is not universal. Thus, lock-free ob-
ject libraries that assume the use of garbage collectors are
not portable to systems without such support. Second, even
if present, garbage collectors are not lock-free as they ei-
ther require mutual exclusion or stop-the-world techniques,
or require special operating system support to access pri-
vate stack space and registers. Third, the failure or delay of
the garbage collector may prevent threads operating on lock-
free objects from making progress indefinitely, thus violating
lock-freedom. Fourth, Harris’ algorithm prohibits threads
from nullifying the pointers of dynamic nodes after their re-
moval, thus the indefinite delay of a single thread is certain to

prevent the automatic garbage collector from freeing an un-
bounded number of nodes, indefinitely. The latter problem
applies to Harris’ algorithm when using lock-free reference
counting methods [25, 4] as well.

As a third memory management option, Harris proposed
a sketch of a deferred freeing memory management method.
Each node includes an extra field through which it can be
linked into a to-be-freed list when it is removed from the set
object, without changing its critical contents. Each thread
must set a per-thread shared timestamp before it starts an
operation on the list. The method uses two to-be-freed lists
that alternate taking the roles of the old list and the new
list. The nodes in the old to-be-freed list are freed only when
the removal time of the latest node in the list precedes the
minimum per-thread timestamp. Also, at that time the two
to-be-freed lists exchange their labels as old and new lists.

The method has multiple flaws. First, it is prone to dead-
lock if one of the threads does not perform operations on
the set indefinitely (even if the thread itself is active). As
the thread’s timestamp remains unchanged indefinitely, the
nodes in the old to-be-freed list are not freed, indefinitely,
and the new to-be-freed list never takes the role of the old
to-be-freed list. Second, even if threads are somehow guar-
anteed to operate on the set infinitely often, the method is
actually blocking (i.e., not lock-free), as the delay or failure
of a thread prevents it from updating its timestamp, and
hence prevents the reuse of an unbounded number of nodes,
indefinitely.

Detlefs et. al. [4] presented a lock-free reference counting
memory management method that uses DCAS. Its perfor-
mance is expected to be at best similar to that of Valois’
reference counting method (i.e., extremely inefficient). Most
statements in an algorithm involving pointers to dynamic
nodes (even reads and register-to-register instruction) are
transformed to functions involving CAS and DCAS opera-
tions. Its advantage over Valois’ method is allowing arbitrary
reuse of the memory of removed nodes.

Other known memory management methods that may ac-
commodate Harris’ list algorithm are not without serious
problems. They are either blocking or depend on special
operating system support [15, 5].

The simplest and most efficient lock-free memory manage-
ment methods are not compatible with Harris’ list algorithm.
The IBM freelist [10, 23] is implemented as a lock-free stack.
A thread allocates a node by popping it from the freelist in
one successful CAS operation, and frees a node for future
reuse by pushing it into the freelist, also in one successful
CAS operation.

The other efficient lock-free memory management method
is the safe memory reclamation method [17] that allows ar-
bitrary reuse of the memory of deleted nodes and provides a
solution to the ABA-problem2 for pointers to dynamic nodes,
without the use of extra space per pointer or per node. It
guarantees an upper bound on the number of deleted nodes
not yet freed, regardless of thread failures and delays. It is
wait-free3, and operating system-independent.

The new algorithm is the first CAS-based lock-free list-
based set algorithm that is compatible with all lock-free mem-
ory management methods, including the latter two.

2The ABA problem [10] is historically associated with CAS.
It happens if a thread reads a value A from a shared location,
computes a new value, and then attempts a CAS operation.
The CAS may succeed when it should not and corrupt the
object, if between the read and the CAS other threads change
the value of the shared location from A to B and back to A
again.
3An operation is wait-free if it is guaranteed to complete
successfully in a finite number of its own steps regardless of
other threads’ actions [7].
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// types and structures
structure NodeType {

Key : KeyType;
〈Mark,Next,Tag〉 : 〈boolean,*NodeType,TagType〉;

}
structure MarkPtrType {

〈Mark,Next,Tag〉 : 〈boolean,*NodeType,TagType〉;
}
// T is the hash array
// M is the number of hash buckets
T[M] : MarkPtrType; // Initially 〈0,null,dontcare〉

Figure 2: Types and structures.

// Hash function
h(key:KeyType):0..M-1 { ... }

// Hash table operations
HashInsert(key:KeyType):boolean {

// Assuming new node allocations always succeed
node←AllocateNode();
node .̂Key← key;
if Insert(&T[h(key)],node) return true;
FreeNode(node); return false;

}

HashDelete(key:KeyType):boolean {
return Delete(&T[h(key)],key);

}

HashSearch(key:KeyType):boolean {
return Search(&T[h(key)],key);

}

Figure 3: Hash table operations.

3. THE ALGORITHM

Structures and Hash Table Functions
Since compatibility with simple and efficient memory man-
agement methods is a central advantage of the new algo-
rithm, we start by presenting a version that is compatible
with freelists [10, 23]. We discuss implementations of the new
algorithm using other memory management methods later in
this section.

The simplest and earliest known ABA-prevention mecha-
nism is to include a tag with the target memory location such
that both are manipulated atomically, and the tag is incre-
mented with updates of the target location [10]. CAS (or a
validation condition) succeeds only if the tag has not changed
since the thread last read the location, assuming that the tag
has enough bits to make full wraparound between the read
and the CAS or validation condition practically impossible.

Figure 2 shows the data structures and the initial values of
shared variables used by the algorithm. The main structure
is an array T of size M . Each element in T is basically a
pointer to a hash bucket, implemented as a singly linked list.
For simplicity, we include a deletion mark with the header
pointer, although it is guaranteed to be always clear.

Each dynamic node must contain the following fields: Key,
Mark, Next, and Tag. The Key field holds a key value.
The Mark field indicates if the key in the node has been
deleted from the set. The Next field points to the follow-
ing node in the linked list if any, or has a null value other-
wise. The Tag field is used for preventing the ABA problem.
〈Mark,Next,Tag〉 must occupy a contiguous aligned mem-
ory block that can be manipulated atomically using CAS or
LL/SC.

The Mark bit and the Next pointer can be placed in one
word, since pointers are at least word aligned on all current
major systems. The Mark bit can occupy a low order bit. The
ABA-prevention Tag field can be placed in an adjacent word
such that both words are aligned on a double word bound-
ary.4. Later, in this section, we present an implementation
that uses only single-word CAS or restricted LL/SC.

Figure 3 shows the hash table functions that use the new
list-based set algorithm. Basically, every hash table opera-
tion, maps the input key to a hash bucket and then calls the
corresponding list-based set function with the address of the
bucket header as an argument.

The List-Based Set Algorithm
Figure 4 shows the Insert, Delete and Search operations of the
new list-based set algorithm. The function Find (described
later in detail) returns a Boolean value indicating whether a
node with a matching key was found in the list. In either case,
by its completion, it guarantees that the private variables
prev, 〈cur,ptag〉 and 〈next,ctag〉 have captured a snapshot of
a segment of the list including the node (if any) that contains
the lowest key value greater than or equal to the input key
and its predecessor pointer. Find guarantees that there was
a time during its execution when *prev was part of the list,
*prev= 〈0,cur,ptag〉, and if cur �= null, then also at that time
cur .̂〈Mark,Next,Tag〉= 〈0,next,ctag〉 and cur .̂Key was the
lowest key value that is greater than or equal to the input
key. If cur= null then it must be that at that time all the
keys in the list were smaller than the input key. Note that, we
assume a sequentially consistent memory model. Otherwise,
memory barrier instructions need to be inserted in the code
between memory accesses whose relative order of execution
is critical.

An Insert operation returns false if the key is found to
be already in the list. Otherwise, it attempts to insert the
new node, containing the new key, before the node curˆ, in
one atomic step using CAS in line A3 after setting the Next
pointer of the new node to cur, as shown in Figure 5. The
success of the CAS in line A3 is the linearization point of
an Insert of a new key in the set. The linearization point of
an Insert that returns false (i.e., finds the key in the set) is
discussed later when presenting Find.

The failure of the CAS in line A3 implies that one or more
of three events must have taken place since the snapshot in
Find was taken. Either the node containing *prev was deleted
(i.e. its Mark is set), the node curˆ was deleted and removed
(i.e., no longer reachable from head), or a new node was
inserted immediately before curˆ.

A Delete operation returns false if the key is not found
in the list, otherwise, cur .̂Key must have been equal to the
input key. If the key is found, the thread executing Delete
attempts to mark curˆ as deleted, using the CAS in line B2,
as shown in Figure 6. If successful, the thread attempts to
remove curˆ by swinging prev .̂Next to next, while verifying
that prev .̂Mark is clear, using the CAS in line B3.

The key technique of marking the next pointer of a deleted
node in order to prevent a concurrent insert operation from
linking another node after the deleted node was used ear-
lier in Harris’ lock-free list-based set algorithm [6], and was
first used in Prakash, Lee, and Johnson’s [20] lock-free FIFO
queue algorithm.

DeleteNode prepares the removed node for reuse and its
implementation is dependent on the memory management

4Most current architectures (32-bit as well as 64-bit) that
support CAS (Intel x86, Sun SPARC) or restricted LL/SC
(PowerPC, MIPS, Alpha) support their operation on aligned
64-bit blocks, and aligned 128-bit operations are likely to
follow on 64-bit architectures
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// private variables
prev : *MarkPtrType;
〈pmark,cur,ptag〉 : MarkPtrType;
〈cmark,next,ctag〉 : MarkPtrType;

Insert(head:*MarkPtrType,node:*NodeType):boolean {
key←node .̂Key;
while true {

A1: if Find(head,key) return false;
A2: node .̂〈Mark,Next〉← 〈0,cur〉;
A3: if CAS(prev,〈0,cur,ptag〉,〈0,node,ptag+1〉)

return true;
}

}

Delete(head:*MarkPtrType,key:KeyType):boolean {
while true {

B1: if !Find(head,key) return false;
B2: if !CAS(&cur .̂〈Mark,Next,Tag〉,

〈0,next,ctag〉,
〈1,next,ctag+1〉) continue;

B3: if CAS(prev,〈0,cur,ptag〉,〈0,next,ptag+1〉)
DeleteNode(cur); else Find(head,key);

return true;
}

}

Search(head:*MarkPtrType,key:KeyType):boolean {
return Find(head,key);

}

Find(head:*MarkPtrType;key:KeyType) : boolean {
try again:

prev←head;
D1: 〈pmark,cur,ptag〉← *prev;

while true {
D2: if cur= null return false;
D3: 〈cmark,next,ctag〉← cur .̂〈Mark,Next,Tag〉;
D4: ckey← cur .̂Key;
D5: if *prev �= 〈0,cur,ptag〉 goto try again;

if !cmark {
D6: if ckey≥key return ckey= key;
D7: prev←&cur .̂〈Mark,Next,Tag〉;

} else {
D8: if CAS(prev,〈0,cur,ptag〉,〈0,next,ptag+1〉)

{DeleteNode(cur); ctag←ptag+1;}
else

goto try again;
}

D9: 〈pmark,cur,ptag〉← 〈cmark,next,ctag〉;
}

}
Figure 4: The list-based set algorithm.
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method. For freelists, DeleteNode pushes the removed node
onto the freelist.

The success of the CAS in line B2 is the linearization point
of a Delete of a key that was already in the set. The lineariza-
tion point of a Delete that does not find the input key in the
set is discussed later when presenting the Find function.

The failure of the CAS in line B2 implies that one or more
of three events must have taken place since the snapshot in
Find was taken. Either the node curˆ was deleted, a new
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Figure 6: Deletion from the middle of the list.

node was inserted after curˆ, or the node nextˆ was removed
from the list. The failure of the CAS in line B3 implies that
another thread must have removed the node curˆ from the
list after the success of the CAS in line B2 by the current
thread. In such a case, a new Find is invoked in order to
guarantee that the number of deleted nodes not yet removed
never exceeds the maximum number of concurrent threads
operating on the object.

The Search operation simply relays the response of the
Find function.

The Find function starts by reading the header of the list
*head in line D1. If the Next pointer of the header is null,
then the list must be empty, therefore Find returns false after
setting prev to head and cur to null. The linearization point
of finding the list empty is the reading of *head in line D1.
That is, it is the linearization point of all Delete and Search
operations that return false after finding the set empty.

If the list is not empty, a thread executing Find traverses
the nodes of the list using the private pointers prev, cur,
and next. Whenever it detects a change in *prev, in lines
D5 or D8, it starts over from the beginning. As discussed
in Section 4, the algorithm is lock-free. A change in *prev
implies that some other threads have made progress in the
meantime.

A thread keeps traversing the list until it either finds a
node with a key greater than or equal to the input key, or
reaches the end of the list without finding such node. If
it is the former case, it returns the result of the condition
cur .̂Key= key at the time of its last execution of the read
in line D3, with prev pointing to cur .̂〈Mark,Next,Tag〉 and
cur .̂Key is the lowest key in the set that is greater than or
equal the input key, at that point (line D3). If the thread
reaches the end of the list without finding a greater or equal
key, it returns false, with *prev pointing to the fields of the
last node and cur= null.

In all cases of non-empty lists, the linearization point of the
snapshot in Find is the last reading of cur .̂〈Mark,Next,Tag〉
(line D3) by the current thread. That is, it is the linearization
point of all Insert operations that return false and all Search
operations that return true, as well as all Delete and Search
operations that return false after finding the set non-empty.

During the traversal of the list, whenever the thread en-
counters a marked node, it attempts to remove it from the
list, using CAS in line D8. If successful, the removed node
is prepared for future reuse in DeleteNode and cmark is up-
dated for continued traversal.

Note that, for a snapshot in Find to be valid, prev .̂Mark
and cur .̂mark must be fount to be clear. If a Mark is found
to be set the associated node must be removed first before
capturing a valid snapshot.

On architectures that support restricted LL/SC but not
CAS, implementing CAS(addr,exp,new) using the following
routine suffices for the purposes of the new algorithm.
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while true {if LL(addr) �= exp return false;
if SC(addr,new) return true;}

Moir [19] presented a general implementation of CAS using
restricted LL/SC that allows exp= new, infinitely often.

Using Other Memory Management Methods
As mentioned earlier, the algorithm is compatible with all
memory management methods for lock-free objects. For ex-
ample, if lock-free reference counting [4, 25] or automatic
garbage collection is used, when a node is removed, the call
to DeleteNode only needs to nullify the removed node’s fields,
just in case their values match the address of some dynamic
structure and thus may form a problematic garbage cycle.
Since, as discussed in Section 2, all memory management
methods other than freelists and the safe memory reclamation
method (SMR) [17] are either extremely inefficient, blocking,
dependent on special system support, and/or dependent on
DCAS, we focus on using SMR with the new algorithm.

SMR’s advantages over freelists include allowing the mem-
ory of removed dynamic nodes to be reused arbitrarily. That
is, it allows the memory use of a dynamic data structure to
shrink. Another advantage is that it can prevent the ABA
problem without the need for double-width CAS or LL/SC
or any extra space per pointer or per node. Thus, it allows
lock-free objects to use minimal space, which is an important
issue for hash tables with large numbers of buckets.

SMR requires target lock-free algorithms to associate a
number of shared pointers, called hazard pointers, (three in
the case of this algorithm) with each participating thread.
The method guarantees that no deleted5 dynamic node is
freed or reused as long as some thread’s hazard pointers have
been pointing to it continuously from a time when it was not
deleted. It is impossible for Valois’ and Harris’ list-based set
algorithms to comply with this requirement as they allow a
thread to traverse a node or a sequence of nodes after these
nodes have already been removed from the list, and hence
possibly deleted.

Figure 7 shows a version of the new algorithm that is
compatible with SMR. Before returning, Insert, Delete, and
Search nullify the hazard pointers to guarantee that the amor-
tized time of processing a deleted node until it is freed for
reuse is (logarithmically) bounded by contention. That is,
whenever a thread is not operating on the object, its haz-
ard pointers are null. This is done after the end of hazards
(i.e., accesses to dynamic structure when they are possibly
deleted and the use of pointers to dynamic structures as ex-
pected values of ABA-prone CAS operations in lines A3, B2
and B3).

In the Find function, there are accesses to dynamic struc-
tures in lines D3, D4, and D8, and the addresses of dynamic
nodes are used as expected values of ABA-prone validation
conditions and CAS operations in lines D5 and D8.

Lines E1 and E2 serve to guarantee that the next time a
thread accesses curˆ in lines D3 and D4 and executes the
validation condition in line D5, it must be the case that the
hazard pointer *hp1 has been continuously pointing to curˆ
from a time when it was in the list, thus guaranteeing that
curˆ is not free during the execution of lines D3 and D4.

The ABA problem is impossible in the validation condition
in line D5 and the CAS in line D8, even if the value of *prev
has changed since last read in line D1 (or line D3 for subse-
quent loop executions). The removal and reinsertion of curˆ
after D1 and before E2 do not cause the ABA problem in D5
or D8. The hazardous sequence of events that can cause the

5In this context, the term deleted refers to calls to DeleteN-
ode and is not related to the HashDelete or list Delete opera-
tions. A deleted node is one that was passed as an argument
of DeleteNode.

ABA problem in D5 and D8 is if curˆ is removed and then
reinserted in the list after line D3 and before D5 or D8. The
insertion and removal of other nodes between *prev and curˆ
never causes the ABA problem in D5 and D8. Thus, by pre-
venting curˆ from being removed and reinserted during the
current thread’s execution of D3–D5 or D3–D8, SMR makes
the ABA problem impossible in lines D5 and D8.

Lines E3, E4, E5, and E6 serve to prevent curˆ in the
next iteration of the loop (if any) from being removed and
reinserted during the current thread’s execution of D3–D5
or D3–D8, and also to guarantee that if the current thread
accesses curˆ in the next iteration in lines D3 and D4, then
curˆ is not free.

Lines E3 and E4 must be between lines D3 and D5. Lines
E5 and E6 can either immediately precede or immediately
follow lines D7 and D9, respectively.

The protection of curˆ in one iteration continues in the
next iteration for protecting the node containing *prev, such
that it is guaranteed that when the current thread accesses
*prev in lines D5 and D8, that node is not free. The same
protections of *prev, curˆ and nextˆ continue through the
execution of lines A3, B2, and B3.

The three hazard pointers *hp0, *hp1, and *hp2 shadow
the movement of the three private pointers next, cur, and
prev down the list, respectively (*hp2 holds the address of
the node including *prev not the value prev). The movement
of the pointers resembles that of a worm with three segments,
with next, cur, and prev as the the head, midsection, and tail,
respectively. In order to advance through the list, a thread
assigns a variant of the value of cur (&cur .̂〈Mark,Next〉) to
prev, then assigns next to cur and finally advances next. SMR
requires that if any hazard pointer inherits its value from an-
other, then the index of the latter must be less than that
of the former in the shared hazard pointer array. This is
needed because the SMR algorithm scans the hazard pointer
array in ascending index order, non-atomically, i.e., one haz-
ard pointer at a time [17]. Therefore, the indices of *hp0,
*hp1, and *hp2 must be in ascending order, respectively.

Finally, it is worth noting that in the new algorithm, the
Key field of a dynamic node does not need to be preserved
after the node’s removal. Therefore, that field can be reused
by the SMR algorithm to link deleted nodes, thus offering
significant space savings.

Also, the bucket headers only need one word per bucket.
The 〈Mark,Next〉 field in dynamic nodes only needs to oc-
cupy one word, and no ABA tags are needed. Also, as an
additional advantage, SMR allows the new algorithm to be
completely dynamic using only single word CAS or restricted
LL/SC.

4. CORRECTNESS
For brevity, we provide only informal proof sketches, with

lemmas indicating the proof roadmap. First we introduce
some definitions.

For all times t, a node is in the list at t, iff at t it is reachable
by following the Next pointers of reachable nodes starting
from head .̂Next.

For all times t, the list is in state Sn,m iff the following are
all true:

1. |{node x: at t, x is in the list ∧ x is not marked.}| = n.

2. |{node x: at t, x is in the list ∧ x is marked.}| = m.

3. ∀ nodes x, y in the list, x.Next= y =⇒ x.Key< y.Key.

For example, a list is in state S0,0 if it contains no nodes
(i.e., its head pointer is null). A list is in state S2,1 if it
contains exactly three nodes, one is marked as deleted and
the other two are not.
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// types and structures
structure NodeType {

Key : KeyType;
〈Mark,Next〉 : 〈boolean,*NodeType〉;}

structure MarkPtrType {
〈Mark,Next〉 : 〈boolean,*NodeType〉;}

// Shared variables
T[M] : MarkPtrType; // Initially 〈0,null〉
// private variables
prev : *MarkPtrType;
cur,next : *NodeType;

// No change in HashInsert, HashDelete, HashSearch.

Find(head:*MarkPtrType;key:KeyType) : boolean {
try again:

prev←head;
D1: 〈pmark,cur〉← *prev;
E1: *hp1← cur;
E2: if *prev �= 〈0,cur〉 goto try again;

while true {
D2: if cur= null return false;
D3: 〈cmark,next〉← cur .̂〈Mark,Next〉;
E3: *hp0←next;
E4: if cur .̂〈Mark,Next〉 �= 〈cmark,next〉 goto try again;
D4: ckey← cur .̂Key;
D5: if *prev �= 〈0,cur〉 goto try again;

if !cmark {
D6: if ckey≥key return ckey= key;
D7: prev←&cur .̂〈Mark,Next〉;
E5: *hp2← cur;

} else {
D8: if CAS(prev,〈0,cur〉,〈0,next〉)

DeleteNode(cur); else goto try again;
}

D9: cur←next;
E6: *hp1←next;

}
}

// SMR related variables
// static private variables
hp0,hp1,hp2 : **NodeType;
// HP is the shared array of hazard pointers
// j is thread id for SMR purposes
hp0=&HP[3*j]
hp1=&HP[3*j+1]
hp2=&HP[3*j+2]
// The order is important

Insert(head:*MarkPtrType,node:*NodeType):boolean {
key←node .̂Key;
while true {

A1: if Find(head,key) {result← false; break;}
A2: node .̂〈Mark,Next〉← 〈0,cur〉;
A3: if CAS(prev,〈0,cur〉,〈0,node〉)

{result← true; break;}
}
*hp0←null; *hp1←null; *hp2←null;
return result;

}

Delete(head:*MarkPtrType,key:KeyType):boolean {
while true {

B1: if !Find(head,key) {result← false; break;}
B2: if !CAS(&cur .̂〈Mark,Next〉,

〈0,next〉,
〈1,next〉) continue;

B3: if CAS(prev,〈0,cur〉,〈0,next〉)
DeleteNode(cur); else Find(head,key);

result← true; break;
}
*hp0←null; *hp1←null; *hp2←null;
return result;

}

Search(head:*MarkPtrType,key:KeyType):boolean {
result←Find(head,key);
*hp0←null; *hp1←null; *hp2←null;
return result;

}

Figure 7: Version of the new algorithm using the SMR method [17] (SMR-related code is in a different font).

A list in state Sn,m corresponds to an abstract set K with
n elements, such that for all nodes x in the list that are not
marked, x.Key ∈ K.

Lemma 1. ∀nodes x, y in the list, x�=y =⇒ x.Key �=y.Key.
Lemma 2. The Key field of a node never changes while

the node is in the list.

Lemma 3. Once set, the Mark field of a node remains set
until the node’s removal from the list.

Lemma 4. A node is never removed from the list while its
Mark field is clear.

Safety
To prove safety, we use the state definitions and the state
transition diagram of Figure 8. The list is in a valid state,
iff it matches the definition of some state Sn,m. The state of
the list changes only on the success of the CAS operations
in lines A3, B2, B3, and D8. Our goal is to prove that the
following claim is always true.

Claim 1. The list is in a valid state, and if a CAS suc-
ceeds then a correct transition occurs as shown in the state
transition diagram in Figure 8, and the transition is consis-
tent with the abstract set semantics.
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S2,2

S1,2
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Figure 8: State transition diagram.

Initially, Claim 1 is true, assuming that the list starts in a
valid state, e.g., S0,0. For a proof by induction, we need to
show that whenever a CAS operation succeeds at time t, and
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Claim 1 (the induction hypothesis) has been true up to that
time, then only a correct transition can take place and the
transition is consistent with the abstract set semantics.

All the following theorems and lemmas are predicated on
the assumption that Claim 1 has been true for all times before
the success of the CAS operation or validation condition in
question at time t.

Lemma 5. At time t, the validation condition in line D5
succeeds ∧ prev�=head =⇒ at t, ∃node x in the list ::
prev=&x.〈Mark,Next〉 ∧ key> x.Key.

Informally. on the success of the validation condition in
D5, *prev is in the list.

Lemma 6. At time t, the validation condition in line D5
succeeds ∧ cur�=null =⇒ at t, node curˆ is in the list.

Lemma 7. The CAS in line A3 succeeds =⇒ for all times
since the current thread last executed the validation condition
in line D5, prev .̂Mark is clear.

Lemma 8. The CAS in line A3 succeeds =⇒ for all times
since the current thread last executed the validation condition
in line D5, curˆ is in the list ∧ cur .̂Key>key.

Lemma 9. The CAS in line B2 succeeds =⇒ for all times
since the current thread last executed the validation condition
in line D5, curˆ is in the list ∧ cur .̂Key=key.

Lemma 10. The CAS in line B3 succeeds =⇒ for all
times since the current thread last executed the validation con-
dition in line D5, prev .̂Mark is clear.

Lemma 11. The CAS in line B3 succeeds =⇒ for all
times since the current thread last executed the CAS in line
B2 successfully, cur .̂Next=next.

Lemma 12. The CAS in line D8 succeeds =⇒ for all
times since the current thread last executed the validation con-
dition in line D5, prev .̂Mark is clear.

Lemma 13. The CAS in line D8 succeeds =⇒ for all
times since the current thread last read cur .̂〈Mark,Next〉 in
line D3, node curˆ is in the list ∧ cur .̂〈Mark,Next〉=〈1,next〉.

Theorem 1. If successful, the CAS in line A3 takes the
list to a valid state and inserts the new key into the set.

Theorem 2. If successful, the CAS in line B2 takes the
list to a valid state and removes cur .̂Key from the set.

Theorem 3. If successful, the CAS in line B3 takes the
list to a valid state and does not modify the set.

Theorem 4. If successful, the CAS in line D8 takes the
list to a valid state and does not modify the set.

Theorem 5. Claim 1 is true at all times.

Lock-Freedom
Lemma 14. Whenever one of the CAS operations or vali-

dation conditions in lines A3, B2, D5, and D8 (also E2 and
E4 when SMR is used) fails, then the state of the list must
have changed since the current thread last executed line D1.

Lemma 15. If the list is in state Sn,m and then the state
of the list changes m+1 times, then at least one operation
(Insert, Delete, or Search) on the list must have succeeded
during that period.

Lemma 16. If a thread starts an operation (Insert, Delete,
or Search) on the list when it is in state Sn,m and then ex-
ecutes line D1 m+2 times, then some operation on the list
must have completed successfully since the start of the current
operation.

Lemma 17. If a thread starts an operation on the list when
it is in state Sn,m and then executes line D2 n.m + 2 times,
then some operation on the list must have completed success-
fully since the start of the current operation.

Theorem 6. The new algorithm is lock-free.

Linearizability
An implementation of an object is linearizable if it can always
give an external observer, observing only the abstract object
operations, the illusion that each of these operations takes
effect instantaneously at some point between its invocation
and its response [9].

The new algorithm is linearizable. since every operation
on the list has a specific linearization point, where it takes
effect. By the safety properties and the definition of Sn,m,
it can be shown that the responses of the list operations are
consistent with the state of the abstract set object at these
points. The following are the linearization points:

• Every Search and Delete operation that returns false,
after searching an empty list, takes effect on its last
reading of *head in line D1.

• Every Search and Delete operation that returns false,
after searching a non-empty list, takes effect on its last
reading of cur .̂〈Mark,Next〉 in line D3.

• Every Insert operation that returns false takes effect on
its last reading of cur .̂〈Mark,Next〉 in line D3.

• Every Search operation that returns true takes effect
on its last reading of cur .̂〈Mark,Next〉 in line D3.

• Every Insert operation that returns true takes effect on
its only successful execution of the CAS in line A3.

• Every Delete operation that returns true takes effect on
its only successful execution of the CAS in line B2.

Theorem 7. The new algorithm is linearizable.

5. PERFORMANCE
We used a 4-processor (375 MHz 604e) IBM PowerPC mul-

tiprocessor to evaluate the performance of the new lock-free
hash table algorithm, relative to hash tables that use Harris’
lock-free list algorithm and various lock-based implementa-
tions.

For the new algorithm, we used two implementations, one
with memory management and one without. For memory
management, we used the safe memory reclamation (SMR)
method [17]. Freelists with ABA tags [10] can also be used
efficiently with the new algorithm, but we used SMR as it re-
quires only single-word atomic operations. The implementa-
tion without memory management is impractical. We include
this implementation only as a means to determine memory
management cost for the new algorithm. For this implemen-
tation, we preallocated all free nodes before the beginning
of each experiment and nodes removed from the hash table
were not reused.

For Harris’ algorithm, we also used two implementations,
with and without memory management. However, for mem-
ory management, Harris’ algorithm cannot use SMR or freel-
ists. The only lock-free OS-independent memory manage-
ment methods that can be used with Harris’ algorithm are
the reference counting methods of Valois‘[25] and Detlefs
et. al. [4]. The latter requires DCAS which renders it im-
practical, while the former uses only CAS. We used Valois’
method with corrections we employed in earlier work [18],
and applied it with extreme care to eliminate unnecessary
manipulations of reference counters that would otherwise de-
grade performance even further if automatic transformations
were employed.

We used four lock-based implementations. Two implemen-
tations with global locks for the whole hash table object. The
other two implementations associate a lock with every hash
bucket, in order to increase concurrency. In both cases, one
implementation used mutual exclusion locks and the other
used reader-writer locks for allowing concurrent read-only ac-
cesses (i.e., Search operations). For mutual exclusion locks,
we used the Test-and-Test-and-Set lock [21]. For reader-
writer locks, we used a variant of a simple centralized al-
gorithm by Mellor-Crummey and Scott [16].

All lock and CAS operations were implemented in short as-
sembly language routines using LL/SC with minimal function
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Figure 9: Average execution time of operations on a hash table with 100 buckets and average load factor 1.
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Figure 11: Average execution time of operations on a hash table with 100 buckets and average load factor 10.

call overheads. For all algorithms, when appropriate cache
line padding was used to eliminate false sharing. The algo-
rithms were compiled using the highest optimization level. In
all experiments, all memory needs fit in physical memory.

We generated workloads of operations (Insert, Delete and
Search) by choosing random keys uniformly from a range of
integers. We varied several parameters: the number of hash
buckets m, the mix of operations, and the range of keys U .
We controlled the average load factor α (average number of
keys per hash bucket) indirectly by initializing the hash table
to include αm keys and by selecting the size of U to be equal
to 2αm.

In all experiments we varied the number of threads op-
erating concurrently on the hash table. In all cases, each
thread performed 1,000,000 operations. We measured the to-
tal CPU time used by all threads to execute these operations.
The pseudo-random sequences for different threads were non-

overlapping in each experiment, but were repeatable for each
thread for fairness in comparing different algorithms.

We conducted many experiments with various parameters.
All showed the same general trends. For brevity and clarity,
we include only results of representative experiments using a
hash table with 100 buckets.

Figures 9, 10 and 11 show the average execution time per
operation for a hash table with various average load factors
and operation mixes. By initializing the hash table to include
100, 500, and 1000 keys, and setting |U | to 200, 1000 and
2000, the hash table had average load factors α of 1, 5 and
10, respectively.

For clarity, we omit the results for the single lock imple-
mentation, since as expected they exhibit significantly in-
ferior performance in comparison to other implementations,
including those using fine-grain locks.

As expected, with higher percentages of Search operations,
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reader-writer locks outperform mutual exclusion locks. The
significant effect of multiprogramming (more than 4 threads)
on the performance of all lock-based implementations is clear,
with varying degrees depending on the frequency of update
operations and the level of multiprogramming.

Being lock-free, Harris’ algorithm is immune to the perfor-
mance degradation that affected the lock-based implemen-
tations under multiprogramming. However, its performance
with memory management is substantially inferior to other
practical alternatives, due to the high overhead of reference
counting. Combined with the fact that its memory require-
ments are unbounded even with bounded object size using
any memory management method, it is clear that Harris’ al-
gorithm is impractical with respect to both performance and
robustness.

The new algorithm provides the best overall performance,
with and without multiprogramming, with various operation
mixes, and under high and low contention. It outperforms
Harris’ algorithm by a factor of 2.5 or more when using lock-
free memory management methods, and matches or exceeds
its performance under the unrealistic assumption of no mem-
ory management, which is not the same as assuming auto-
matic garbage collection (which is likely to cost much more
than SMR). The cost of memory management for the new
algorithm is consistently low.

The results indicate that for general practical use, the new
algorithm is the algorithm of choice for implementing shared
hash tables.

6. CONCLUSIONS
Prior lock-free algorithms for sets and hash tables suffer

from serious drawbacks that prevent or limit their use in
practice. These drawbacks include size inflexibility, depen-
dence on DCAS, and dependence on problematic and highly-
inefficient memory management techniques.

In this paper we presented the first CAS-based lock-free
list-based set algorithm that is compatible with all memory
management methods. We used it as a building block of a
dynamic lock-free hash table algorithm.

Our experimental results showed significant performance
advantages of the new algorithm over the best known lock-
free as well as lock-based hash table implementations. The
new algorithm outperforms the best prior lock-free algorithm,
Harris’ [6], by a factor of 2.5 or more, in all lock-free cases. It
generally outperforms the best lock-based implementations,
with and without multiprogramming, under high and low
contention, often by significant margins. The results indicate
that it is the algorithm of choice for implementing shared
hash tables. Also, the new algorithm offers upper bounds
on its memory use relative to the set size with all lock-free
as well as blocking memory management method, while Har-
ris’ algorithm cannot provide such bound even with bounded
maximum set size with any memory management method.

This paper also demonstrates the significant effect of mem-
ory management characteristics of dynamic lock-free algo-
rithms on their performance, robustness and practicality. Eval-
uating the merits of prior and future lock-free algorithms
must take into account their compatibility with memory man-
agement methods. A dynamic lock-free algorithm cannot be
considered generally practical unless it is compatible with
freelists.
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